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NeRF (neural radiance fields):

Neural networks as a volume representation,
using volume rendering to do view

synthesis.(x,y,z,0,¢) = color, opacity

Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,



Representing a scene as a continuous 5D function
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3 Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,



Generate views with traditional volume rendering

Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,



Generate views with traditional volume rendering

Rendering model for ray r(t) = o + td:
Ray

3D volume
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0 Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,



Generate views with traditional volume rendering

Rendering model for ray r(t) = o + td:
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6 Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,




Generate views with traditional volume rendering

Rendering model for ray r(t) = o + td:

N
Cr~ ) Tiac
; ac\

colors

Ray

weights

How much light is blocked earlier along ray: 3D volume

1—1
T =10 —ay)
j=1

‘ Camera

Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,



Generate views with traditional volume rendering

Rendering model for ray r(t) = o + td:
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Sigma parametrization for continuous opacity

Rendering model for ray r(t) = o + td:
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Etfective resolution is tied to distance between samples

Rendering model for ray r(t) = o + td:
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10 Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,

How much light is contributed by ray segment i:

X; — 1 — G_Jiéti



Volume rendering is trivially ditferentiable

Renderlng model for ray r( ) = 0 + td:
. A4 Ray
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Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,
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Optimize with gradient descent on rendering loss

12 Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,



Training network to reproduce all input views of the scene

13 Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,



Positional encoding: high frequency embedding of input coordinates
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14 Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,



Simple trick enables network to memorize images

Ground truth image Standard fully-connected net With “embedding”

19 Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,



Positional encoding also directly improves our scene representation!

NeRF (Naive) NeRF (with positional encoding)

16 Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,



Implementation Details

Camera Locations and Poses

» Use Structure from Motion (e.g., COLMAP) to initialize camera poses
* |ncorrect camera poses lead to bad results

» Joint optimization of camera poses and scene presentation.

Photo credit: https://colmap.github.io/


https://colmap.github.io/

Implementation Details

Training and inference speed:

* Original NeRF is quite slow.

» Faster training and inference is an active research topic.

* Optimized CUDA kernel for small MLP network (10x faster)
» Efficient data structure: multi-resolution hashing (10+ faster)
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Instant Neural Graphics Primitives [Mduller et al.,]



Toward 3D-aware Generative Models



3D Generative Adversarial Networks
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Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling. [Wu*, Zhang?*, et al., NeurlPS 2016]



3D Convolutional Layers

Easy to implement:
- Replace 2D by 3D in your code

3D data e.g., GConv2D -> Conv3D
ConvTranspose?2d->ConvTranspose3d

MaxPool2d -> MaxPool3d

CLASS torch.nn.Conv3d(in_channels, out_channels, kernel_size, stride=1, padding=0,
dilation=1, groups=1, bias=True, padding_mode="'zeros ', device=None, dtype=None) [SOURCE)

Photo credit: Shiva Verma



3D Generative Adversarial Networks
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Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling. [Wu*, Zhang?*, et al., NeurlPS 2016]



3D Generative Adversarial Networks
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Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling. [Wu*, Zhang?*, et al., NeurlPS 2016]



How to add Color and Texture?



Learning 3D Disentanglement

2D image

I
shape viewpoint texture



Learning 3D Disentanglement

Real/fake shape Real/fake image

shape network differentiable projection texture network
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Visual Object Networks: Image Generation with Disentangled 3D Representation [Zhu et al., NeurlPS 2018]



Learning 3D Disentanglement
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Visual Object Networks: Image Generation with Disentangled 3D Representation [Zhu et al., NeurlPS 2018]



Learning 3D Disentanglement

Visual Object Networks: Image Generation with Disentangled 3D Representation [Zhu et al., NeurlPS 2018]



Learning 3D Disentanglement

viewpoint

texture

Editing viewpoint, shape, and texture Example-based texture transfer Interpolation in the latent space

Visual Object Networks: Image Generation with Disentangled 3D Representation [Zhu et al., NeurlPS 2018]



Limitations:
1. Voxel representation is expensive.

2. Requires ground truth 3D aata.
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Volumetric 3D

Each grid cell stores information (e.g., occupancy, color)

Very general but memory-intensive

256x256x256 > 1024x1024x1024

Cannot even fit a single training data to GPU

Slide credit: Shubham Tulsiani



o Improvements:
1. Using implicit representation (network-baseq)
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Signed Distance Function (SDF)
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DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. [Park et al., CVPR 2019]



Deep SDF
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DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. [Park et al., CVPR 2019]



Deep SDF

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. [Park et al., CVPR 2019]



Deep SDF
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DeepSDF preserve details and render visually pleasing results compared to
voxel-based methods.



Improvements:
1. Using implicit representation (network-based)

2. Learning from image collections
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HoloGAN: Unsupervised Learning of 3D Representations From Natural Images. [Nguyen-Phuoc et al., ICCV 2019]




HoloGAN
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Limitations:
- Do not synthesize geometric outputs (e.g., voxels, SDF).
- No explicit viewpoint consistency. (same issue with Visual Object Networks)

HoloGAN: Unsupervised Learning of 3D Representations From Natural Images. [Nguyen-Phuoc et al., ICCV 2019]



NeRF + GANs

(Neural rendering + Generative Models)
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HoloGAN PlatonicGAN

Ours

GRAF: Generative Radiance Fields

Sampling

Sampling

Sampling

GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. [Schwarz*, Liao*, et al., ICCV 2019]
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GRAF: Generative Radiance Fields
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 NeRF Generator is conditioned on both shape and appearance code.
» Patch-based Discriminator (full-image discriminator is too slow)

GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. [Schwarz*, Liao*, et al., ICCV 2019]



GRAF: Generative Radiance Fields

g =2

Multi-scale ray sampling

GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. [Schwarz*, Liao*, et al., ICCV 2019]



Training a 3D-Aware GAN

3D-Aware GAN Training Steps
1. Generate a representation of a scene
2. Render the scene from a random camera pose

3. Feed the image to a 2D discriminator

4. Backpropagate through the discriminator and differentiable rendering

Generate a scene Render a 2D Image Feed the image to the discriminator

F 4 N
= 'F / - [Discriminator - "Realness”
[
, \_ J

Slide credit: Eric Chan
piI-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis [Chan et al., 2021]
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piI-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis [Chan et al., 2021]



m-GAN

Focal Length Camera Position Latent Interpolation

Slide credit: Eric Chan
pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis [Chan et al., 2021]



Slide credit: Eric Chan
pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis [Chan et al., 2021]



m-GAN

Reconstruction

Slide credit: Eric Chan
pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis [Chan et al., 2021]



Advanced Architectures: StyleNeRF
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Baseline architecture

Proposed architecture

rendering features via volumetric rendering + GANs-based upsampler

Also see recent work: e.g., StyleNeRF [Gu et al.], EG3D [Chan et al.], StyleSDF [Or-El et al.], ShadeGAN [Pan et al.], ...
StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis [Gu et al., 2021]
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Advanced Architectures: EG3D (StyleNeRF+Triplane)
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for speed-up via volumetric rendering via image encoder

F(X, ¥, X) -> F(x, y) + F(X, z) + F(y, 2) features are useful for upsampling If the model is too slow,

use GAN-based upsampler

Also see recent work: e.g., StyleNeRF [Gu et al.], EG3D [Chan et al.], StyleSDF [Or-El et al.], ShadeGAN [Pan et al.], ...
EG3D: Efficient Geometry-aware 3D Generative Adversarial Networks [Chan et al., 2021]



EG3D: Efficient Geometry-aware 3D Generative Adversarial Networks [Chan et al., 2021]



Text-based Editing
with Generative NeRFs



Text-based Editing

a DSLR photo of a squirrel

wearing a purple hoodie

reading a book

DreamFusion: Text-to-3D using 2D Diffusion [Poole et al., 2022]



Text-based Editing
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FOR loop
Step 1. Render a view using existing NeRF
Step 2. Add noise and denoise using a pre-trained Stable Diffusion model
Step 3. Update NeRF parameters with the gradient (difference between added and predicted noises)

DreamFusion: Text-to-3D using 2D Diffusion [Poole et al., 2022]



Text-based Editing

DreamFusion: Text-to-3D using 2D Diffusion [Poole et al., 2022]



Instruct NeRF2NeRF

Instruct-NeRF2NeRF: Editing 3D Scenes with Instructions [Haque et al., 2023]



Instruct NeRF2NeRF

Dataset Update

Orlglnal Dataset Image

Text Prompt

“Turn the bear into a grizzly bear”

Current NeRF Render Noise

FOR loop
Step 1. Render a view using existing NeRF
Step 2. Use InstructPix2Pix to produce output images
Step 3. Update NeRF parameters with the generated result from Step 2

InstructPix2pix: image-conditional diffusion model (https://www.timothybrooks.com/instruct-pix2pix/)
Instruct-NeRF2NeRF: Editing 3D Scenes with Instructions [Haque et al., 2023]



https://www.timothybrooks.com/instruct-pix2pix/

Thank Youl

https://learning-image-synthesis.github.io/



