3D-aware Synthesis (part |l)

Jun-Yan Zhu
16-726, Spring 2025

Many slides from Eric Chan © EG3D [Chan et al., 2022]

NeRF (neural radiance fields):

Neural networks as a volume representation,
using volume rendering to do view

synthesis.(x,y,z,0,¢) = color, opacity

Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,

Representing a scene as a continuous 5D function

RN e | | B

Spatlal Viewing Output Output
location direction color density

.Q

Fully-connecteo
neural network

9 layers,
256 channels

3 Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,

Generate views with traditional volume rendering

Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,

Generate views with traditional volume rendering

Rendering model for ray r(t) = o + td:
Ray

3D volume
t1

‘ Camera

0 Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,

Generate views with traditional volume rendering

Rendering model for ray r(t) = o + td:

N Ray
('~ E TZ'CYZ'CZ'
1=1 \ \ tN
colors
weights
3D volume

1

‘ Camera

6 Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,

Generate views with traditional volume rendering

Rendering model for ray r(t) = o + td:

N
Cr~) Tiac
; ac\

colors

Ray

weights

How much light is blocked earlier along ray: 3D volume

1—1
T =10 —ay)
j=1

‘ Camera

Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,

Generate views with traditional volume rendering

Rendering model for ray r(t) = o + td:

N
Cr~) Tiac
; ozc\

colors

Ray

weights

How much light is blocked earlier along ray: 3D volume

1—1
T =10 —ay)
j=1

‘ Camera

How much light is contributed by ray segment i:

o; =1 — e 7i%

Sigma parametrization for continuous opacity

Rendering model for ray r(t) = o + td:

N
Cr~) Tiac
; ac\

colors

Ray

weights

How much ||ght s blocked earlier along ray: 3D volume

1 = Hl—a]

How much I|ght E contrlbuted by ray segment i:

oy = 1 — 6_0"&

1

‘ Camera

d Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,

Etfective resolution is tied to distance between samples

Rendering model for ray r(t) = o + td:

N
Cr~) Tiac
; ac\

colors

weights

How much light is blocked earlier along ray:

1—1
T =1]0—ay)
j=1

‘ Camera

10 Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,

How much light is contributed by ray segment i:

X; — 1 — G_Jiéti

Volume rendering is trivially ditferentiable

Renderlng model for ray r() = 0 + td:
. A4 Ray

C’ g Z T ; idifferentiable w.r.t.

colors

weights

How much I|ght s blocked earlier along ray: 3D volume

1 = Hl—a]

How much light is contributed by ray segment i:

—0,;0t;

‘ Camera

Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,

aizl—e

11

Optimize with gradient descent on rendering loss

12 Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,

Training network to reproduce all input views of the scene

13 Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,

Positional encoding: high frequency embedding of input coordinates

—E - ©
sin(X), cos(x)

sin(2x), cos(2x)
sin(4x), cos(4x) — m— (C)
sin(2"Vx), ;.?OS(ZNX)

14 Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,

Simple trick enables network to memorize images

Ground truth image Standard fully-connected net With “embedding”

19 Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,

Positional encoding also directly improves our scene representation!

NeRF (Naive) NeRF (with positional encoding)

16 Slides credit: Ben Mildenhall, Pratul Srinivasan et al.,

Implementation Details

Camera Locations and Poses

» Use Structure from Motion (e.g., COLMAP) to initialize camera poses
* |ncorrect camera poses lead to bad results

» Joint optimization of camera poses and scene presentation.

Photo credit: https://colmap.github.io/

https://colmap.github.io/

Implementation Details

Training and inference speed:

* Original NeRF is quite slow.

» Faster training and inference is an active research topic.

* Optimized CUDA kernel for small MLP network (10x faster)
» Efficient data structure: multi-resolution hashing (10+ faster)

Fim, BE15 : 1/No A
_ (1) nl 1 m(y; ®)

.;) % . OO

TN || «4., 000
" 0 | B ™™g 0000
_ |- -H 0000

: g : 000

. . OO0

. ; - 3 - 3
(i Bashingohvoselverfices (2) Lookup (3) Linear interpolation (4) Concatenation (5) Neural néfwork

Instant Neural Graphics Primitives [Mduller et al.,]

Toward 3D-aware Generative Models

3D Generative Adversarial Networks

512x4x4x4 y
256xX8x8%8 :
128X16X16X16

N

G(z) in 3D Voxel Space
64x64x64

TR o reen
o e "] T THT

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling. [Wu*, Zhang?*, et al., NeurlPS 2016]

3D Convolutional Layers

Easy to implement:
- Replace 2D by 3D in your code

3D data e.g., GConv2D -> Conv3D
ConvTranspose?2d->ConvTranspose3d

MaxPool2d -> MaxPool3d

CLASS torch.nn.Conv3d(in_channels, out_channels, kernel_size, stride=1, padding=0,
dilation=1, groups=1, bias=True, padding_mode="'zeros ', device=None, dtype=None) [SOURCE)

Photo credit: Shiva Verma

3D Generative Adversarial Networks

/7
= = B
7 ~ y. Reconstructed

shape

oo

Image Variational Mapped latent
Input Image encoder vector

N

” Generator

Generated
shape N £
”

A

Latent vector

Discriminator

Real shape

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling. [Wu*, Zhang?*, et al., NeurlPS 2016]

3D Generative Adversarial Networks

v';
.
>
h o edieias Y

Input Reconstructed Input Reconstructed
Image 3D shape Image 3D shape

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling. [Wu*, Zhang?*, et al., NeurlPS 2016]

How to add Color and Texture?

Learning 3D Disentanglement

2D image

I
shape viewpoint texture

Learning 3D Disentanglement

Real/fake shape Real/fake image

shape network differentiable projection texture network

q .
y

14
— =) =) ‘
/]

shape code 3D shape / S - I 2D image
T W f

“ | | 2.5D sketch | |
=

viewpoint texture code

P - [y

—— T b
==

Visual Object Networks: Image Generation with Disentangled 3D Representation [Zhu et al., NeurlPS 2018]

Learning 3D Disentanglement

viewpolnt

: - '
o= .

samples from 2D GANSs

texture a

our 3D, 2.5D, and 2D output 3D disentanglement

Visual Object Networks: Image Generation with Disentangled 3D Representation [Zhu et al., NeurlPS 2018]

Learning 3D Disentanglement

Visual Object Networks: Image Generation with Disentangled 3D Representation [Zhu et al., NeurlPS 2018]

Learning 3D Disentanglement

viewpoint

texture

Editing viewpoint, shape, and texture Example-based texture transfer Interpolation in the latent space

Visual Object Networks: Image Generation with Disentangled 3D Representation [Zhu et al., NeurlPS 2018]

Limitations:
1. Voxel representation is expensive.

2. Requires ground truth 3D aata.

30

Volumetric 3D

Each grid cell stores information (e.g., occupancy, color)

Very general but memory-intensive

256x256x256 > 1024x1024x1024

Cannot even fit a single training data to GPU

Slide credit: Shubham Tulsiani

o Improvements:
1. Using implicit representation (network-baseq)

32

Signed Distance Function (SDF)

@ SDF<0°

’
.
.
Q ,
.
' ” @
.
g

" |« SDF>0

. a

Explicit function:
y = 2x.(y = f(x))

o Decision
/ __—~ boundary
/e of implicit
surface

Implicit function:
2y —4x = 0,F(x,y) =0
A set of zeros of a function of

two variables.

(c)

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. [Park et al., CVPR 2019]

Deep SDF

(xyz) [] sDF Code [| sbF

(x,y,2)
(a) Single Shape DeepSDF (b) Coded Shape DeepSDF

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. [Park et al., CVPR 2019]

Deep SDF

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. [Park et al., CVPR 2019]

Deep SDF

—
}\
"&.

~—

DeepSDF preserve details and render visually pleasing results compared to
voxel-based methods.

Improvements:
1. Using implicit representation (network-based)

2. Learning from image collections

37

\

[Const 4x4x4x51 2}

VA

Representation: 3D feature representation

Conv3iD 3x3x3

AdalN

LRelu

\

MLP:

Conv3iD 3x3x3

AdalN

LRelu

MLP:

3D
TRANSFORM

C

Camera pose

6

HoloGAN

Conv3D 3x3x3

|
Conv3D 3x3x3

Conv2D 3x3

Conv2D 3x3

o
>
)

Z >
QEE
S T
c < -
O
O

A

MLPE

Training: Adversarial loss + latent code reconstruction

Modulation: AdalN

HoloGAN: Unsupervised Learning of 3D Representations From Natural Images. [Nguyen-Phuoc et al., ICCV 2019]

HoloGAN

] P~ ‘ ; *
el e N
L 4 ¥

oy | I 0 .t:,‘ ' W Y ar

| ' § ? ? \\‘ !«P ',‘.
" _;’:J;!‘%}' !:32*\1‘2;/‘ \¥ P
: i~ g .,‘ o ,\\ 4 . : \3» ‘
e ‘ ' ‘1 e

", 23

Limitations:
- Do not synthesize geometric outputs (e.g., voxels, SDF).
- No explicit viewpoint consistency. (same issue with Visual Object Networks)

HoloGAN: Unsupervised Learning of 3D Representations From Natural Images. [Nguyen-Phuoc et al., ICCV 2019]

NeRF + GANs

(Neural rendering + Generative Models)

40

HoloGAN PlatonicGAN

Ours

GRAF: Generative Radiance Fields

Sampling

Sampling

Sampling

GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. [Schwarz*, Liao*, et al., ICCV 2019]

Voxel Representation

3D Object

g Neural “
Rendering
3D Feature

Radiance Field
Z q
\Td\“x & o) Rendering

o B
(c
/S T fT

GRAF: Generative Radiance Fields

Gy

Ray

Sampling

/ '
vV ~ Dy

Nps Npa
- d,— v(d,) (ct,ob)

Ray

Conditional Radiance Field

3D Point 7)
—> . —>
Sampling| > Xy V(Xr)

g \ 3D Point N j

— I

—’Cfr

Volume Rendering

Discriminator

Generator

> P’/ »> D b
Predicted Patch

. |
PD\ —

v~ Dy, / Pixel Real
Sampling Patch

 NeRF Generator is conditioned on both shape and appearance code.
» Patch-based Discriminator (full-image discriminator is too slow)

GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. [Schwarz*, Liao*, et al., ICCV 2019]

GRAF: Generative Radiance Fields

g =2

Multi-scale ray sampling

GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. [Schwarz*, Liao*, et al., ICCV 2019]

Training a 3D-Aware GAN

3D-Aware GAN Training Steps
1. Generate a representation of a scene
2. Render the scene from a random camera pose

3. Feed the image to a 2D discriminator

4. Backpropagate through the discriminator and differentiable rendering

Generate a scene Render a 2D Image Feed the image to the discriminator

F 4 N
= 'F / - [Discriminator - "Realness”
[
, _ J

Slide credit: Eric Chan
piI-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis [Chan et al., 2021]

4)
Generator |,

Noise

. J

(a) ™ (b)
S
e 0 (x)
Po 01 On—1 -
r N\ ~ r ™)) - : (=)
- - = — O, o FiLM SIREN sin(y-input+3) (5
5 o 5 o 5 o e (@ 2 2
— — — -
Position x e ¥ e v — — 2V . D ‘_ :L‘) - O
- 5 — 5 - 5 o O o | ¢ (x,d) - >
. i i =5 5 = 5 ’ — ©
Mapping Network o E —r’ Nl
- T \ J
Noise z — {%Z gggg] — . :
| Ray Directiond E—'requenaes 'y] [Phase Shifts ,8]

Mapping network + AdalN (FILM) + learnable positional encoding
¢; (xi) = sin (7, - (Wix; +b;) + 3;)

piI-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis [Chan et al., 2021]

m-GAN

Focal Length Camera Position Latent Interpolation

Slide credit: Eric Chan
pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis [Chan et al., 2021]

Slide credit: Eric Chan
pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis [Chan et al., 2021]

m-GAN

Reconstruction

Slide credit: Eric Chan
pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis [Chan et al., 2021]

Advanced Architectures: StyleNeRF

Camerap € P —>—‘ N x N Camerap € P —>|_ Nx N
w
xK s XK"‘l XK bex} * Style cond.
Y Y block
Latentze Z Fourier | Fourier Latentz € Z Fourier Fourier —.>.—> Mod
l + * l * + * ' . Affine
FG BG FG p| BG Demod |[#{ Conv 1x 1 5 | Per-pixel
Mapping FG BG Mapping FG BG : noise
Network | e Network e Fixed
. FG - FG @ Sum and
SR Leaky ReLU
=)
—-/ _». —/ il m Insert
Y Y v upsampler
w
—> BLK 2D Aggregation *
— BLK Y
o BLK — BLK (TT1) Y Y
| BLK BLK Demod || Conv 1 x 1
Y ¥ BLR O Upsample
to RGB BLK
Y Yy VY Y b B
NxN 4N x 4N

Baseline architecture

Proposed architecture

rendering features via volumetric rendering + GANs-based upsampler

Also see recent work: e.g., StyleNeRF [Gu et al.], EG3D [Chan et al.], StyleSDF [Or-El et al.], ShadeGAN [Pan et al.], ...
StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis [Gu et al., 2021]

@ Gradio X +

-

C @ localhost:21111

MODEL NAME
FFHQ512 v

CHECKPOINT PATH

TRUNCATION TRICK

SEED1
4

SEED2
9

LINEAR MIXING RATIO (GEOMETRY)

LINEAR MIXING RATIO (APPARENCE)
YAW

PITCH

FOV

OUTPUT

2

0.7

- B

Screenshot

~ B

Clear

StyleNeRF: A Style-based 3D-Aware Generator for

0.12s

Flag

ligh-resolution Image Synthesis [Gu et al., 2021]

Advanced Architectures: EG3D (StyleNeRF+Triplane)

—— Latent
512 scalars
Mapping Intermediate latent, 512 scalars
Ne%work , . é Final image I3sg
B Iiianes 512x512x3 StyleGAN2
£ Feature maps 3 images 4) Features I¢ ‘_ N
256x256x96 256x256x32 Neural Renderer 128x128x32 . Discriminator
B) Colorss Vol | o o
F oy 2o 1[')r|-plane —DDensity1 olume | L I =
L —=< ecoder =| | Rendering Superres ® Real
< AT TN ’ ' e |512x512x6 or
I ._al = .| Module 8 . el
=2 T Fvza_ 7 Raw image lzag
i & — 128x1|28x3 N 512x512 3T <
NN N X X .
StyleGAN2 Reshape| | ? ~_Upsample] g
Generator Camera params P 8
25 scalars
Tri-plane representation Rendering features Generate final output
for speed-up via volumetric rendering via image encoder

F(X, ¥, X) -> F(x, y) + F(X, z) + F(y, 2) features are useful for upsampling If the model is too slow,

use GAN-based upsampler

Also see recent work: e.g., StyleNeRF [Gu et al.], EG3D [Chan et al.], StyleSDF [Or-El et al.], ShadeGAN [Pan et al.], ...
EG3D: Efficient Geometry-aware 3D Generative Adversarial Networks [Chan et al., 2021]

EG3D: Efficient Geometry-aware 3D Generative Adversarial Networks [Chan et al., 2021]

Text-based Editing
with Generative NeRFs

Text-based Editing

a DSLR photo of a squirrel

wearing a purple hoodie

reading a book

DreamFusion: Text-to-3D using 2D Diffusion [Poole et al., 2022]

Text-based Editing

S

"a DSLR photo of a
peacock on a surfboard" Imagen

Z, t ~ U(O,]-) ‘Ikansformere‘ \ :f3¢(zt|y, t)
S G L

PR

P(light)

N normals 'n rel.ldering
-
= v"” / ; é] : .
density 7 albedo p |/ colorc |/ ~ P (camera) ® N (0,1)
NeRF MLP(-; 0) Backpropagate onto NeRF weights

FOR loop
Step 1. Render a view using existing NeRF
Step 2. Add noise and denoise using a pre-trained Stable Diffusion model
Step 3. Update NeRF parameters with the gradient (difference between added and predicted noises)

DreamFusion: Text-to-3D using 2D Diffusion [Poole et al., 2022]

Text-based Editing

DreamFusion: Text-to-3D using 2D Diffusion [Poole et al., 2022]

Instruct NeRF2NeRF

Instruct-NeRF2NeRF: Editing 3D Scenes with Instructions [Haque et al., 2023]

Instruct NeRF2NeRF

Dataset Update

Orlglnal Dataset Image

Text Prompt

“Turn the bear into a grizzly bear”

Current NeRF Render Noise

FOR loop
Step 1. Render a view using existing NeRF
Step 2. Use InstructPix2Pix to produce output images
Step 3. Update NeRF parameters with the generated result from Step 2

InstructPix2pix: image-conditional diffusion model (https://www.timothybrooks.com/instruct-pix2pix/)
Instruct-NeRF2NeRF: Editing 3D Scenes with Instructions [Haque et al., 2023]

https://www.timothybrooks.com/instruct-pix2pix/

Thank Youl

https://learning-image-synthesis.github.io/

