

3D-aware Synthesis (part II) Jun-Yan Zhu 16-726, Spring 2025

Many slides from Eric Chan

© EG3D [Chan et al., 2022]

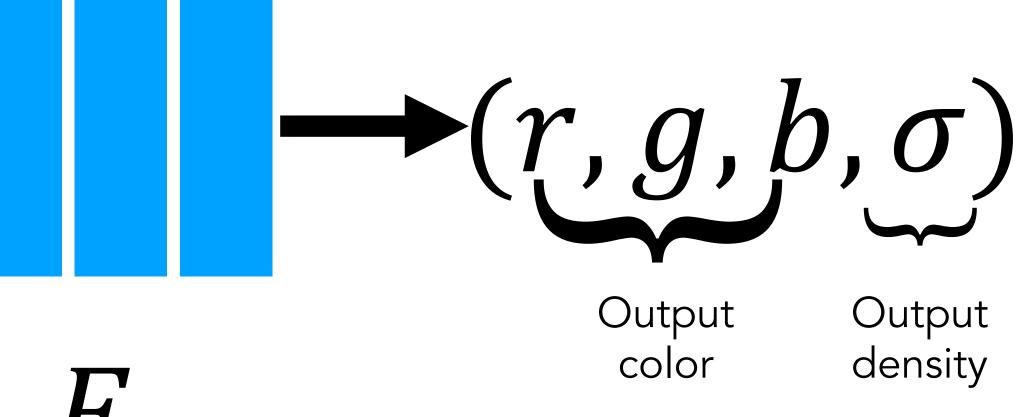
NeRF (neural radiance fields): Neural networks as a volume representation, using volume rendering to do view synthesis. $(x, y, z, \theta, \phi) \rightarrow color, opacity$

Representing a scene as a continuous 5D function

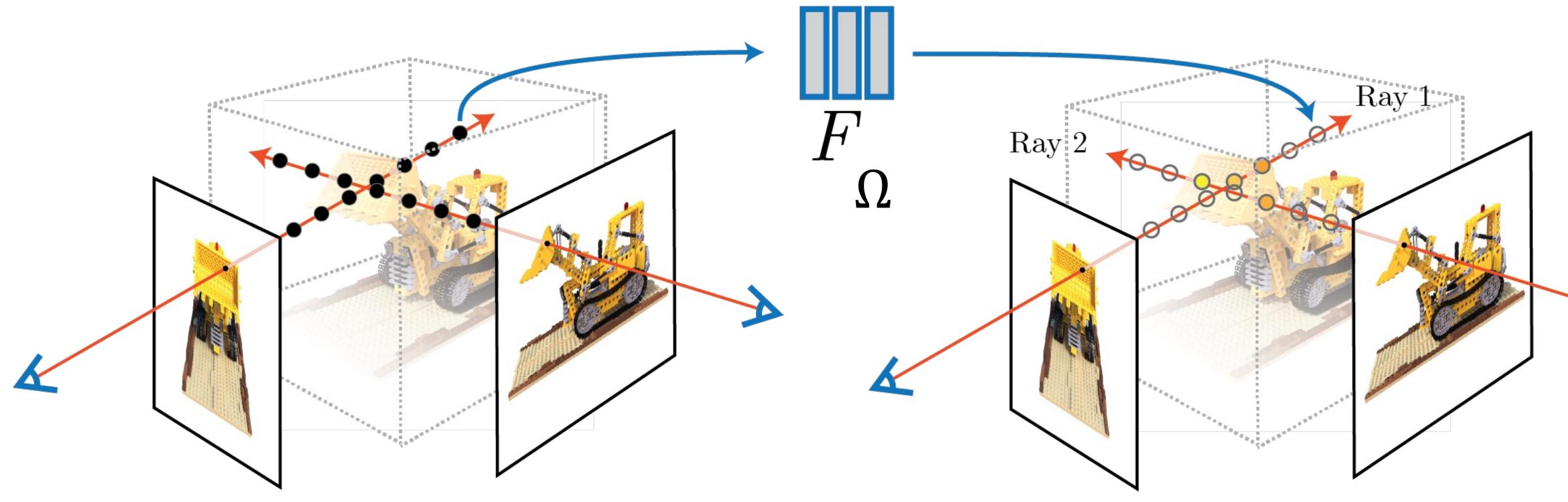
 $(\chi, \chi, \chi, Z, \theta, \phi)$

Spatial location

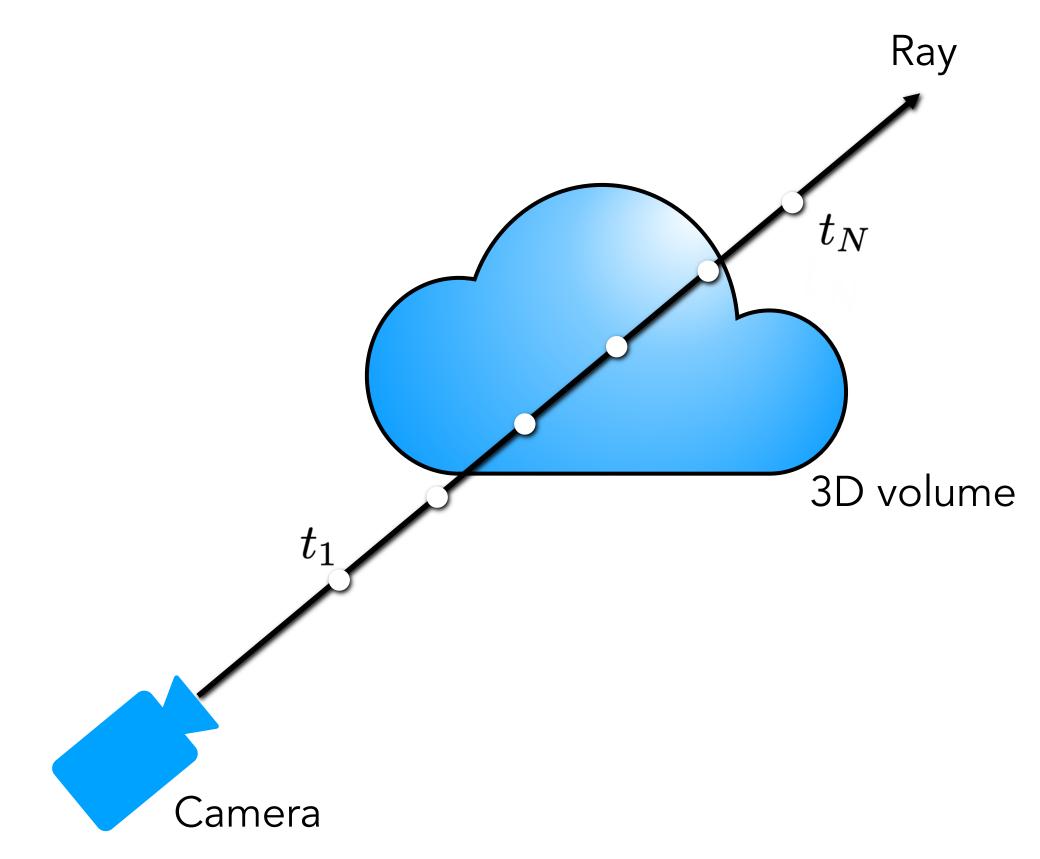
Viewing direction



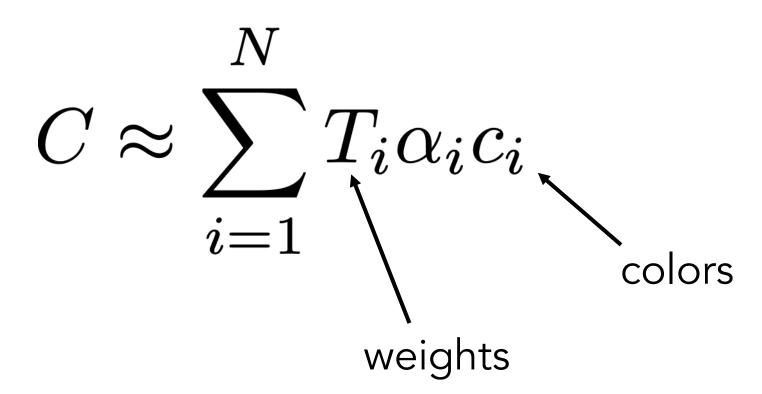
Fully-connected neural network 9 layers, 256 channels

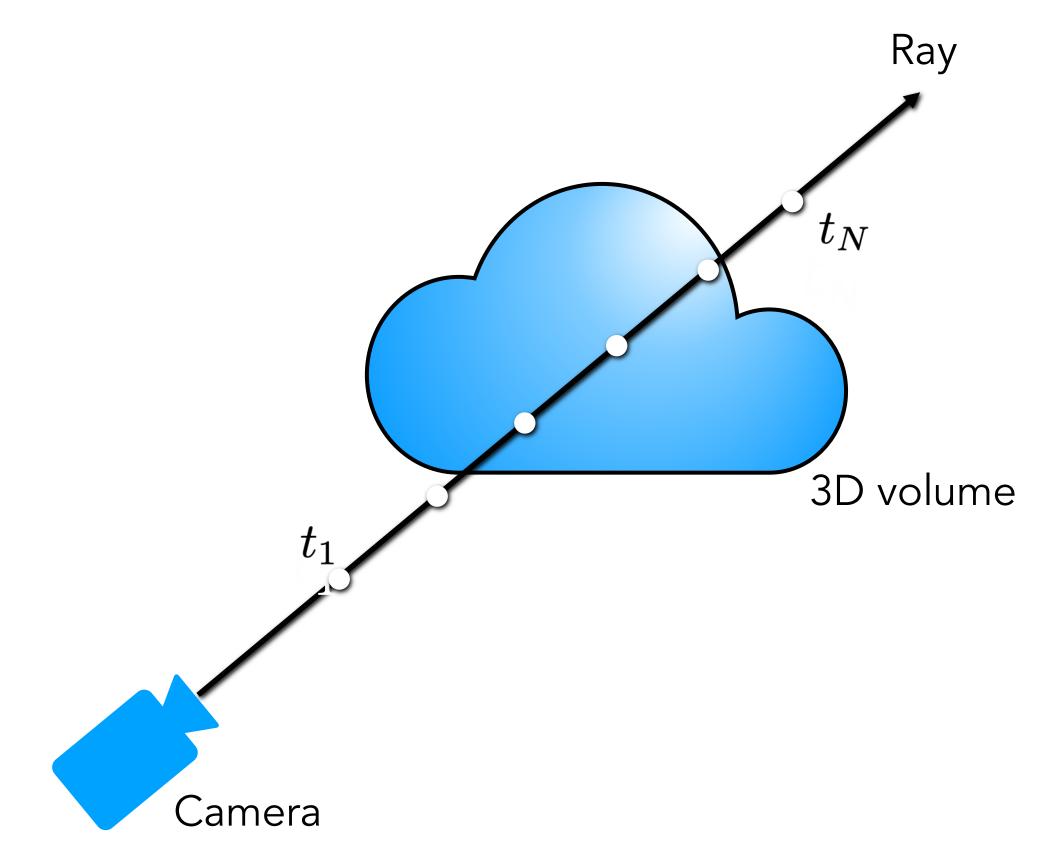


Rendering model for ray r(t) = o + td:

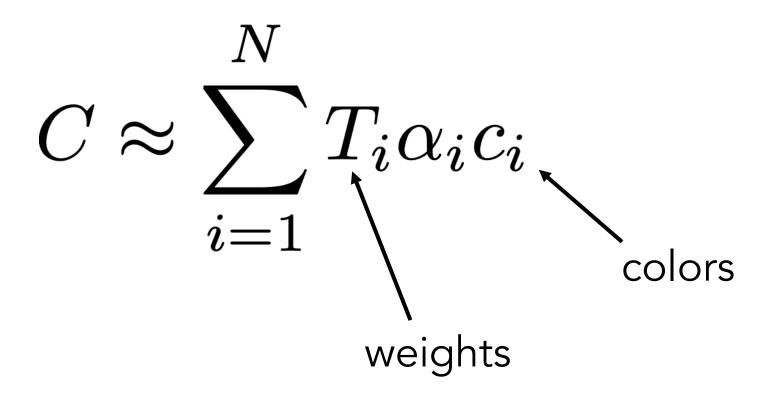


Rendering model for ray r(t) = o + td:

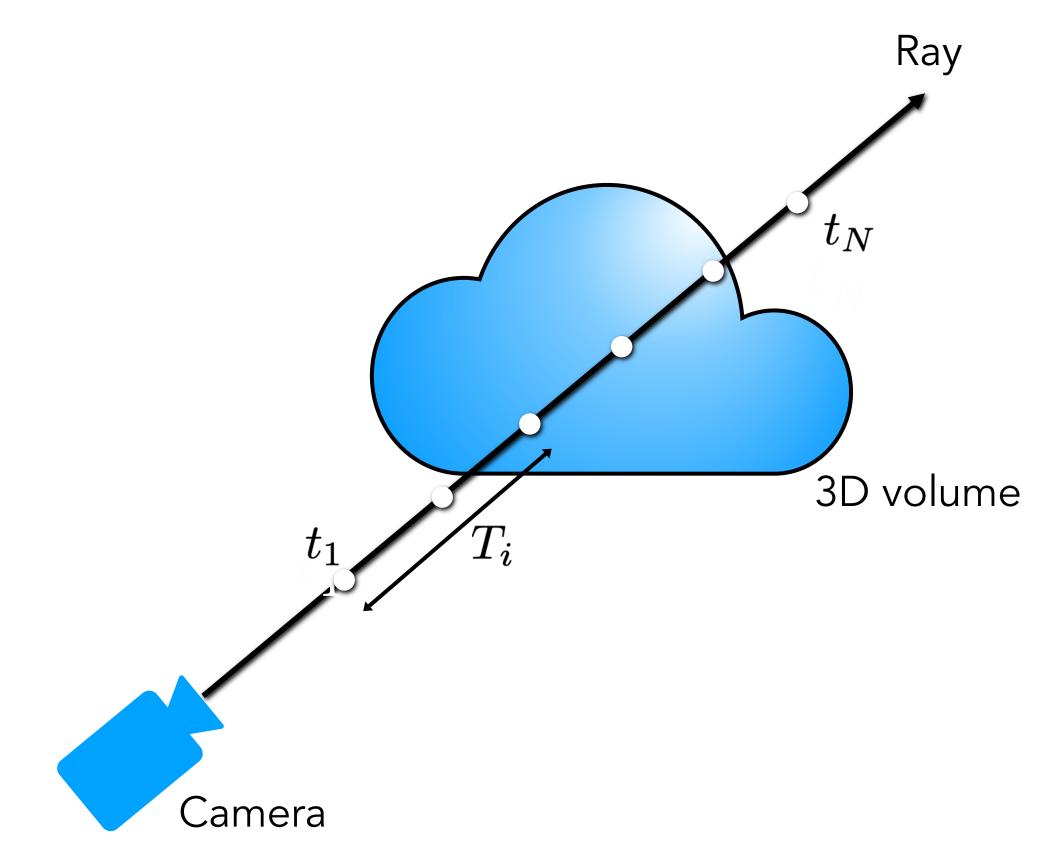




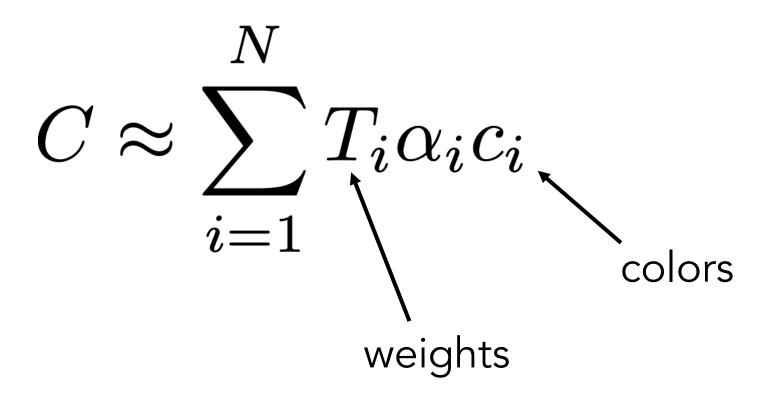
Rendering model for ray r(t) = o + td:



How much light is blocked earlier along ray: $T_i = \prod_{j=1}^{i-1} (1-\alpha_j)$



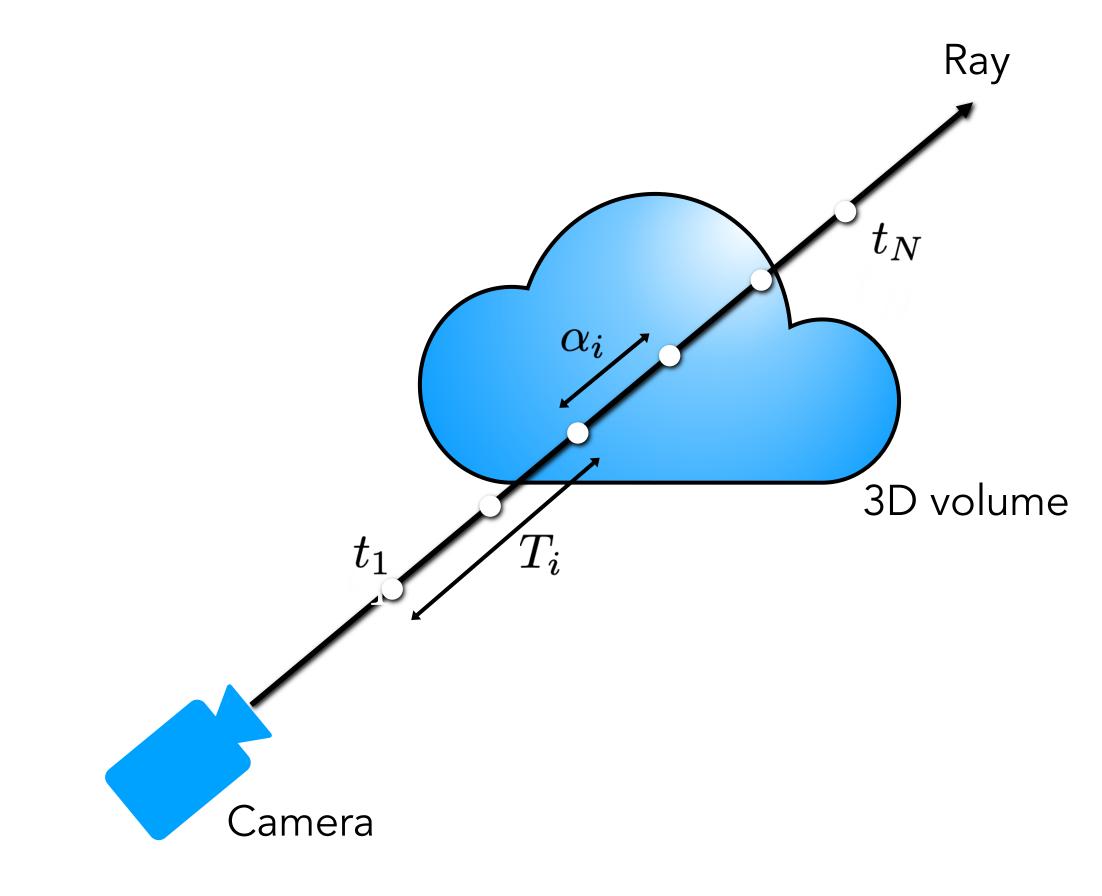
Rendering model for ray r(t) = o + td:



How much light is blocked earlier along ray: $T_i = \prod_{j=1}^{i-1} (1-\alpha_j)$

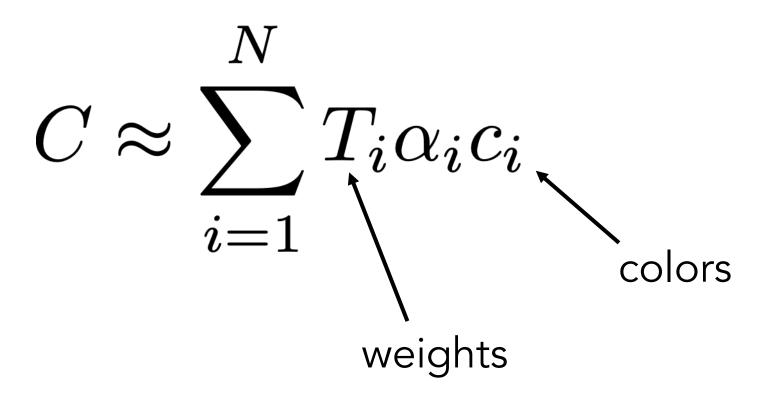
How much light is contributed by ray segment *i*:

$$\alpha_i = 1 - e^{-\sigma_i \delta t_i}$$



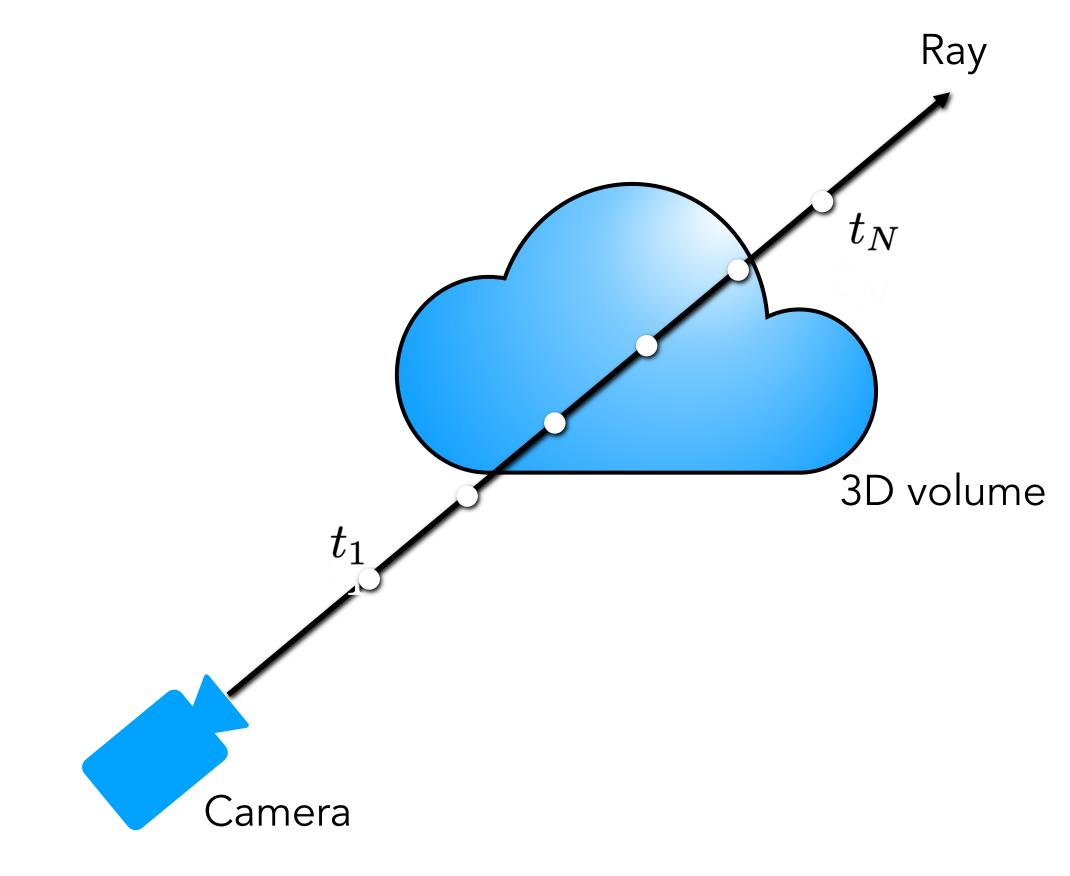
Sigma parametrization for continuous opacity

Rendering model for ray r(t) = o + td:



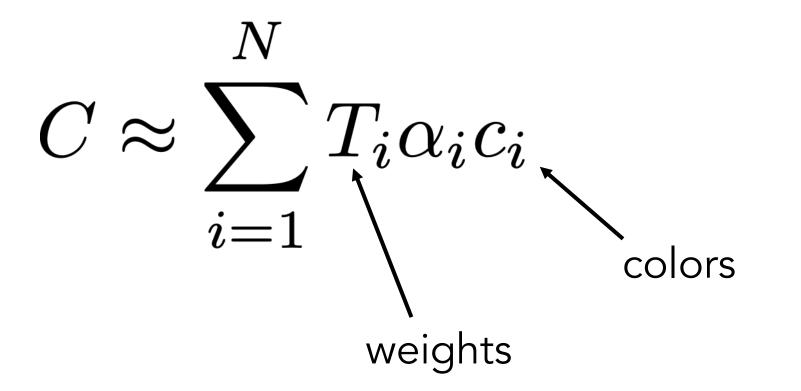
How much light is blocked earlier along ray: $T_i = \prod_{j=1}^{i-1} (1-\alpha_j)$

How much light is contributed by ray segment i: $\alpha_i = 1 - e^{-\sigma_i \delta t_i}$



Effective resolution is tied to distance between samples

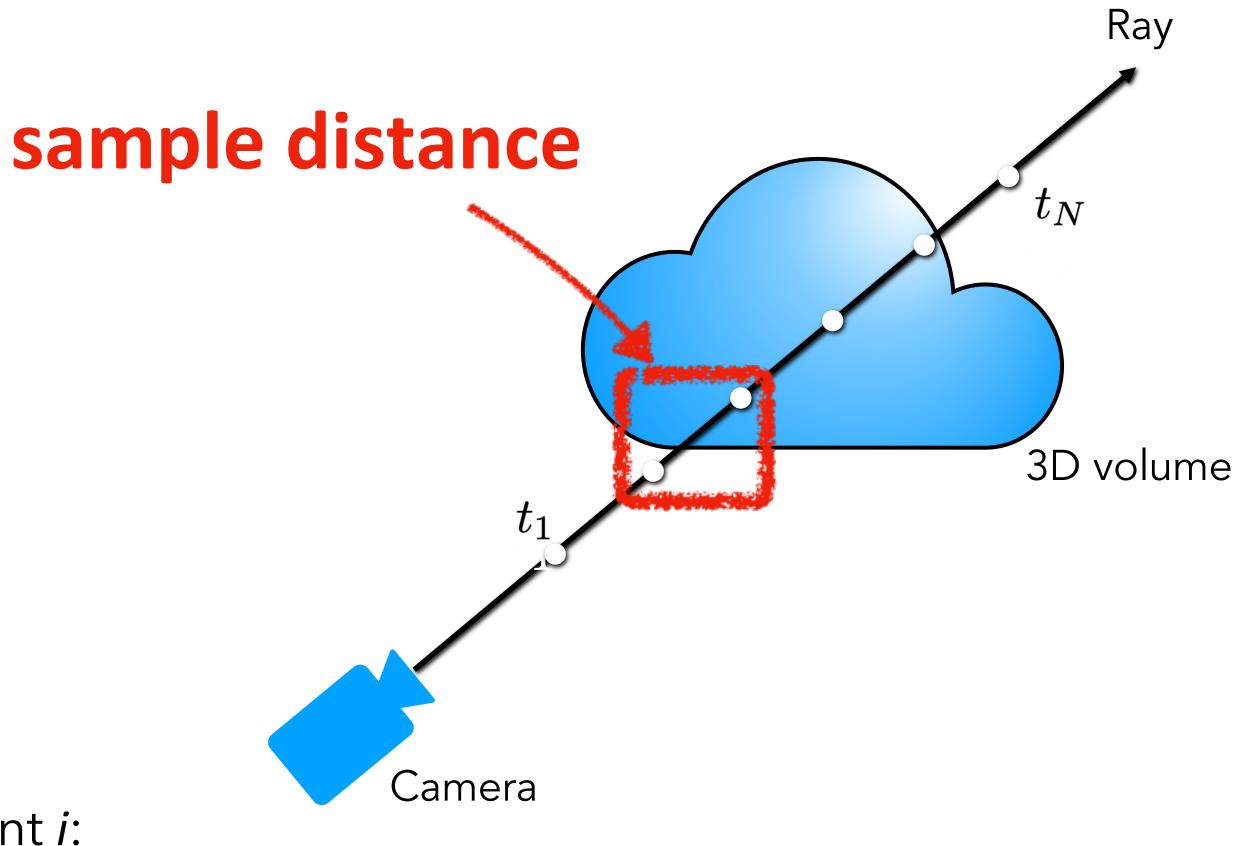
Rendering model for ray r(t) = o + td:



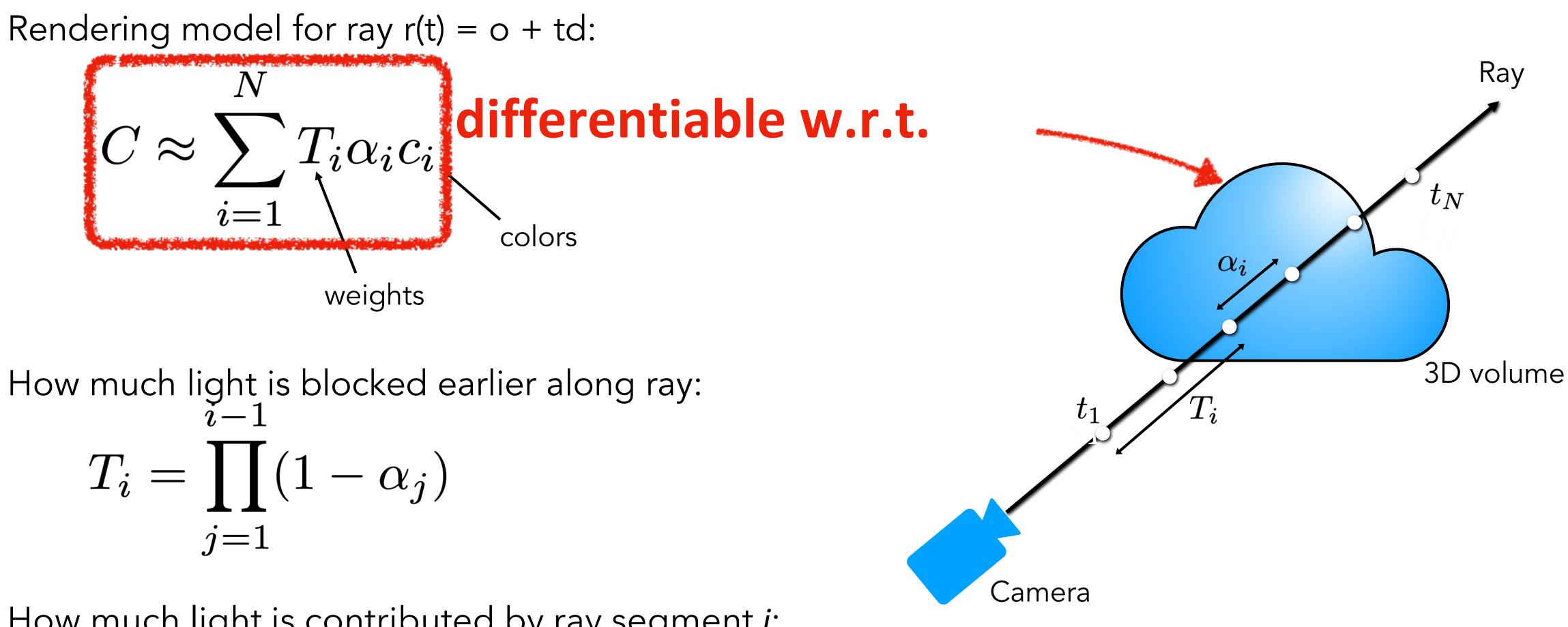
How much light is blocked earlier along ray: $T_i = \prod_{j=1}^{i-1} (1-\alpha_j)$

How much light is contributed by ray segment *i*:

$$\alpha_i = 1 - e^{-\sigma_i \delta t_i}$$



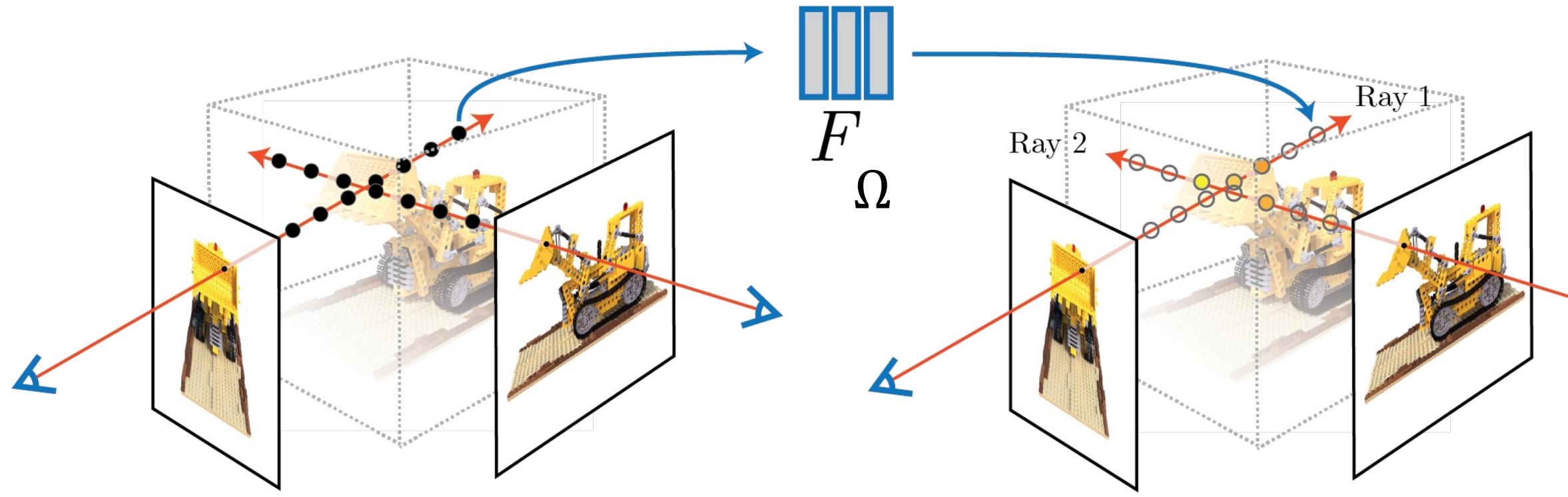
Volume rendering is trivially differentiable



How much light is contributed by ray segment *i*:

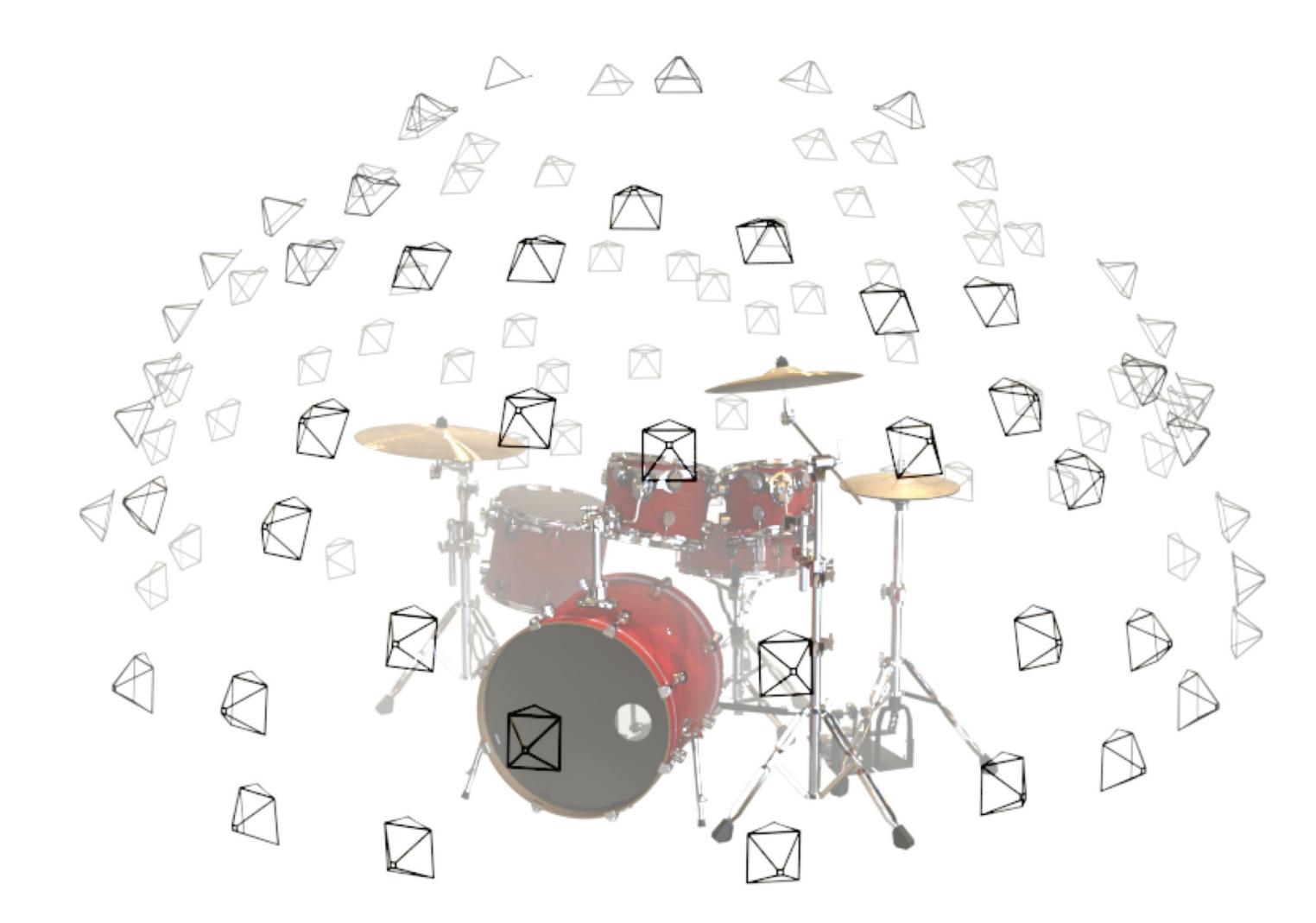
$$\alpha_i = 1 - e^{-\sigma_i \delta t_i}$$

Optimize with gradient descent on rendering loss

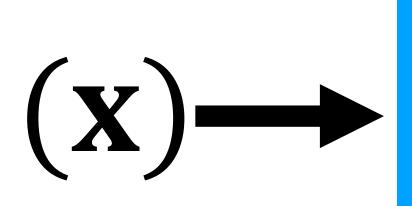


 $\min_{\Omega} \sum_{i=1}^{n} \| \operatorname{render}^{(i)}(F_{\Omega}) - I_{gt}^{(i)} \|$ **II**2

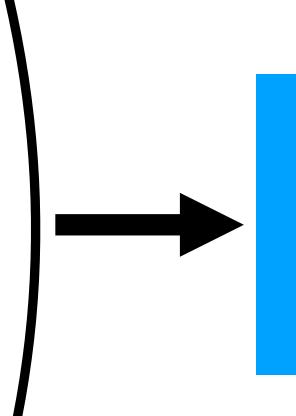
Training network to reproduce all input views of the scene

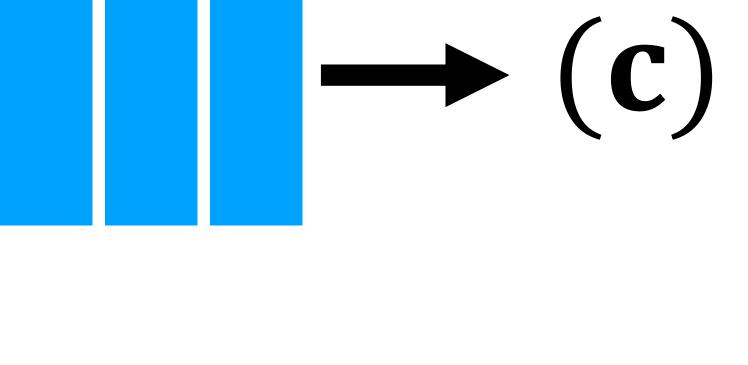


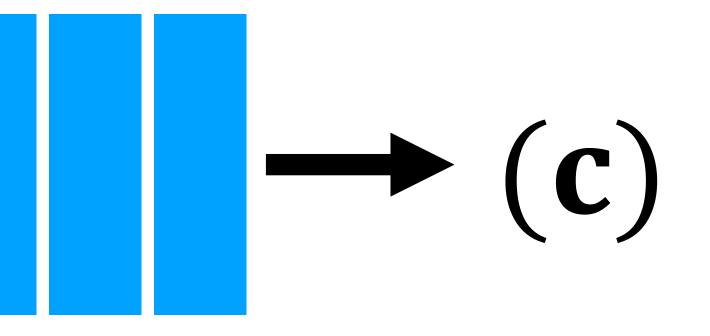
Positional encoding: high frequency embedding of input coordinates



$sin(\mathbf{x}), cos(\mathbf{x})$ $sin(2\mathbf{x}), cos(2\mathbf{x})$ $sin(4\mathbf{x}), cos(4\mathbf{x})$ \vdots $sin(2^N\mathbf{x}), cos(2^N\mathbf{x})$

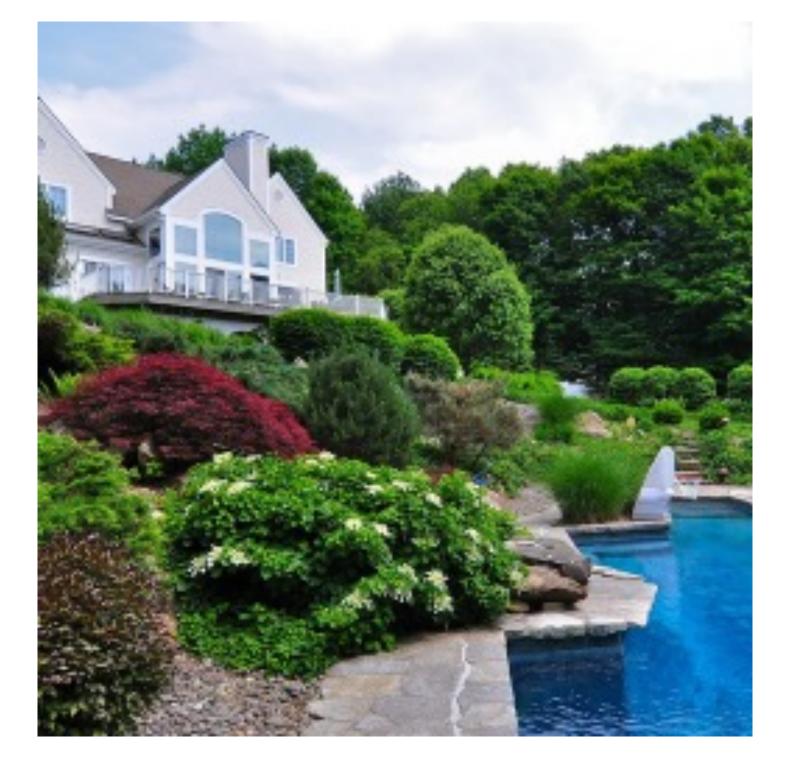






Simple trick enables network to memorize images

Ground truth image



Standard fully-connected net

With "embedding"



Positional encoding also directly improves our scene representation!



NeRF (Naive)

NeRF (with positional encoding)

Implementation Details

Camera Locations and Poses

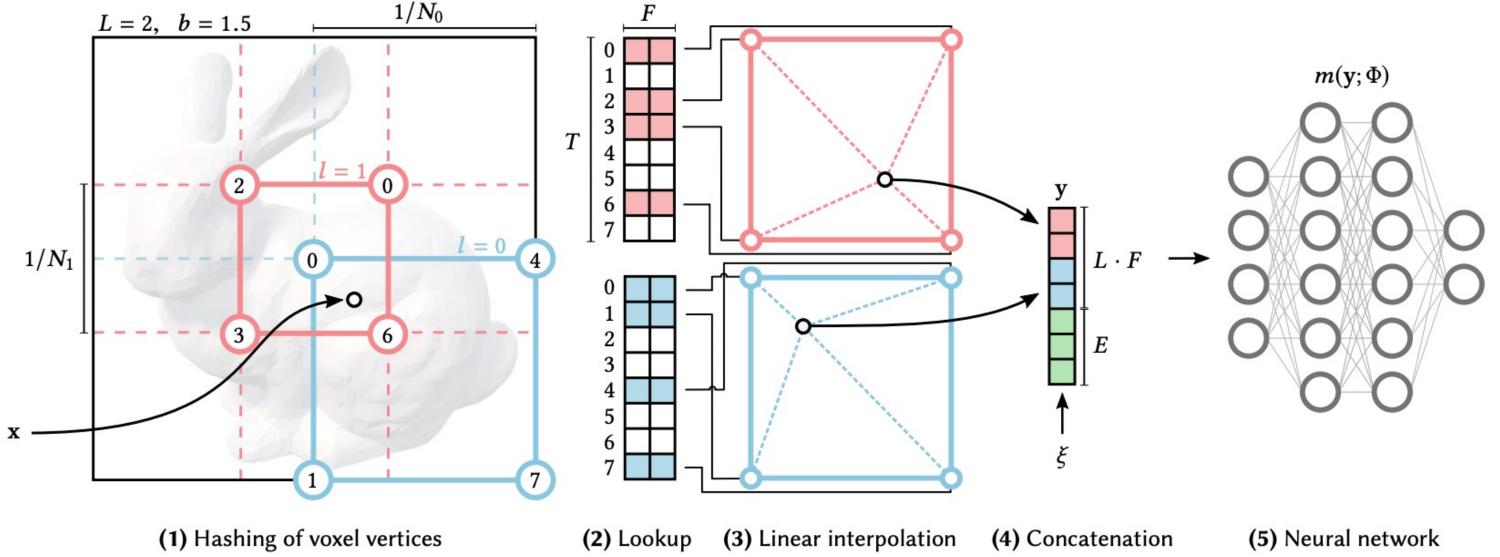
- Use Structure from Motion (e.g., <u>COLMAP</u>) to initialize camera poses
- Incorrect camera poses lead to bad results
- Joint optimization of camera poses and scene presentation.

Photo credit: https://colmap.github.io/

Implementation Details

Training and inference speed:

- Original NeRF is quite slow. •
- Faster training and inference is an active research topic.
- Optimized CUDA kernel for small MLP network (10x faster) •
- Efficient data structure: multi-resolution hashing (10+ faster)



Instant Neural Graphics Primitives [Müller et al.,]

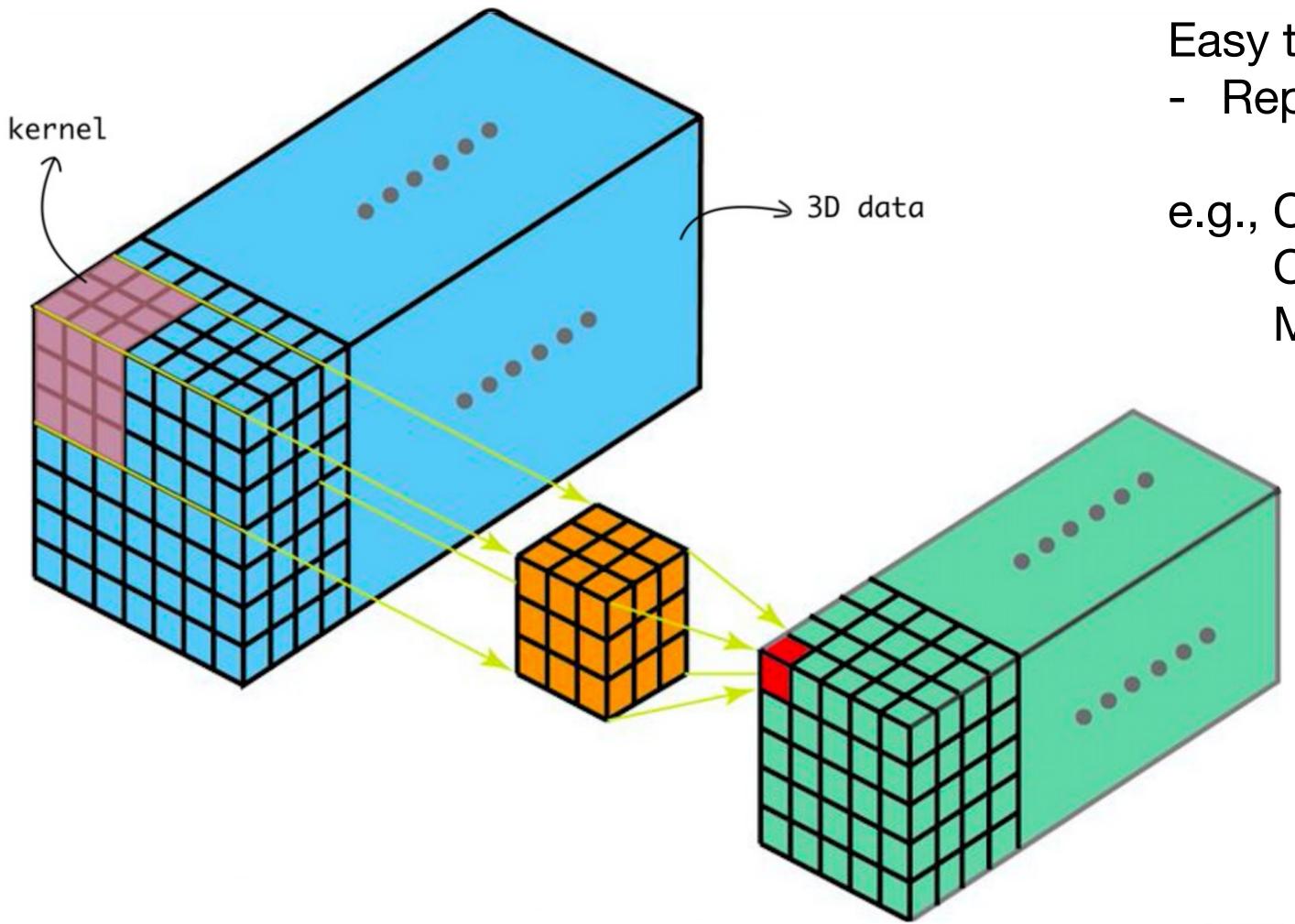
Toward 3D-aware Generative Models

3D Generative Adversarial Networks



Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling. [Wu*, Zhang*, et al., NeurIPS 2016]

3D Convolutional Layers



CLASS torch.nn.Conv3d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None) [SOURCE]

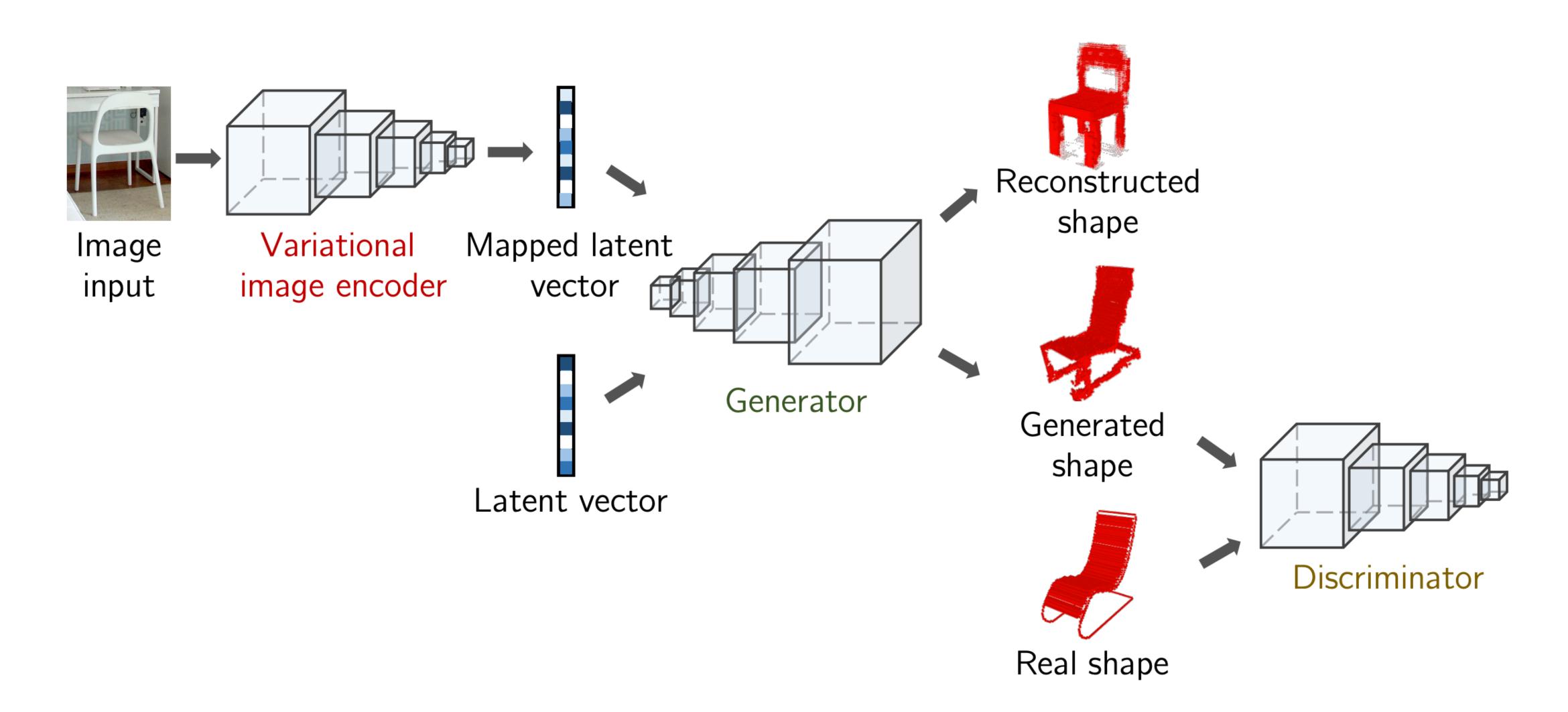
Easy to implement:

- Replace 2D by 3D in your code

e.g., Conv2D -> Conv3D ConvTranspose2d->ConvTranspose3d MaxPool2d -> MaxPool3d

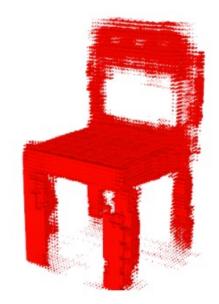
Photo credit: Shiva Verma

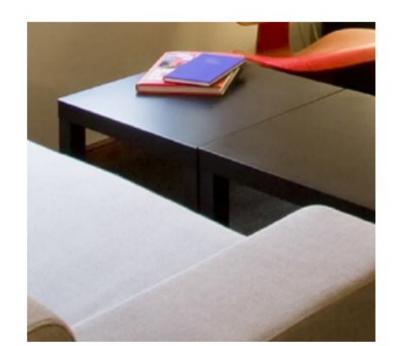
3D Generative Adversarial Networks



Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling. [Wu*, Zhang*, et al., NeurIPS 2016]

3D Generative Adversarial Networks

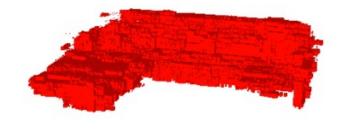




Input image

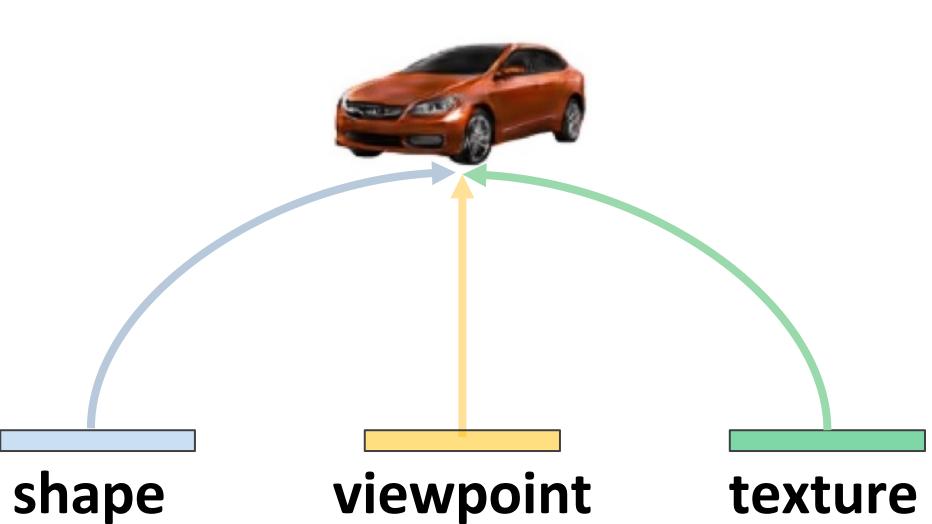
Reconstructed 3D shape

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling. [Wu*, Zhang*, et al., NeurIPS 2016]

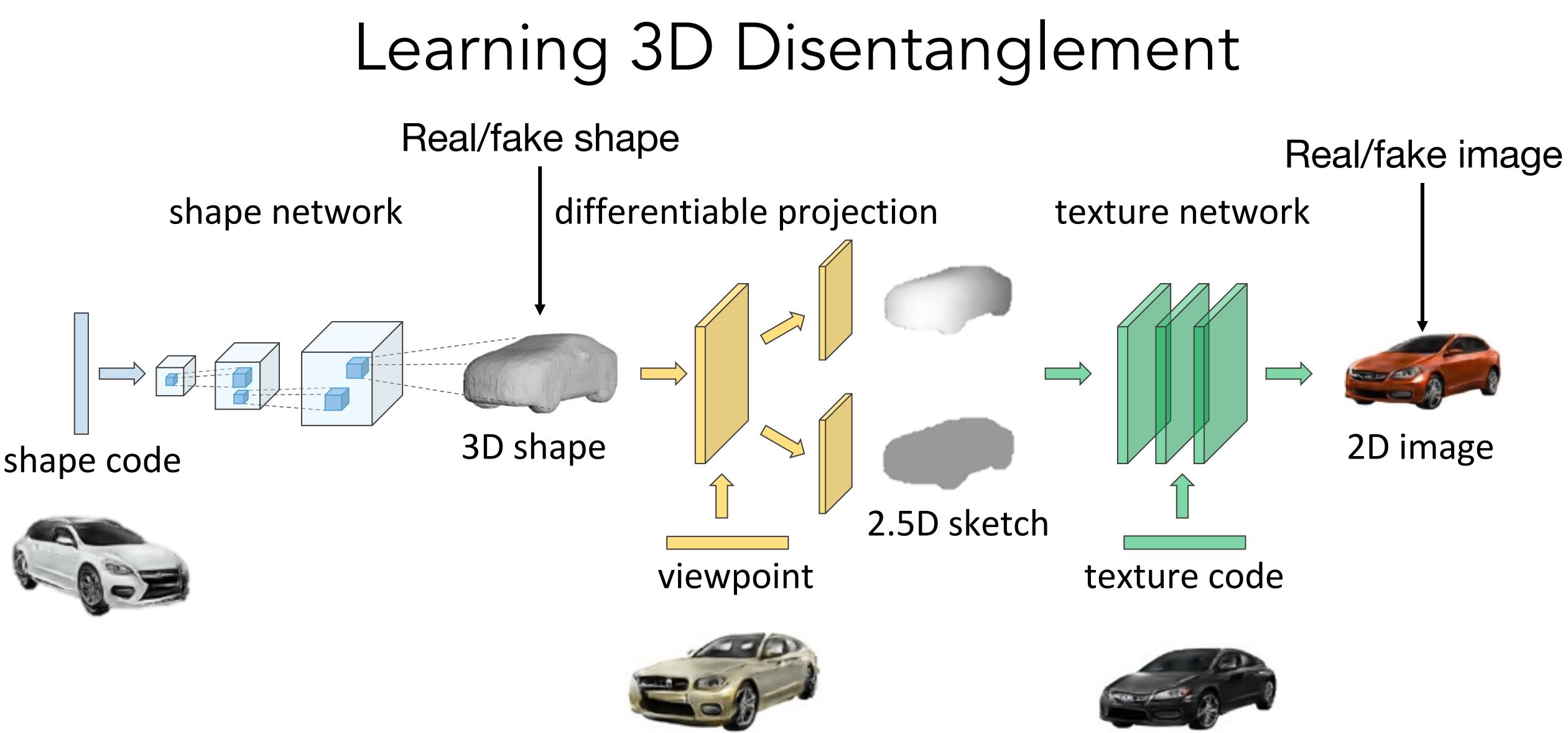


Input image Reconstructed 3D shape

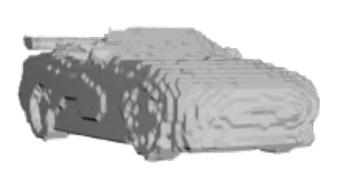
How to add Color and Texture?

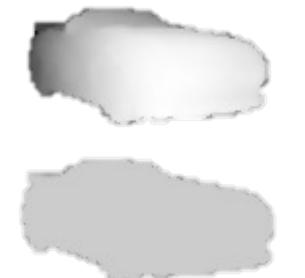


2D image

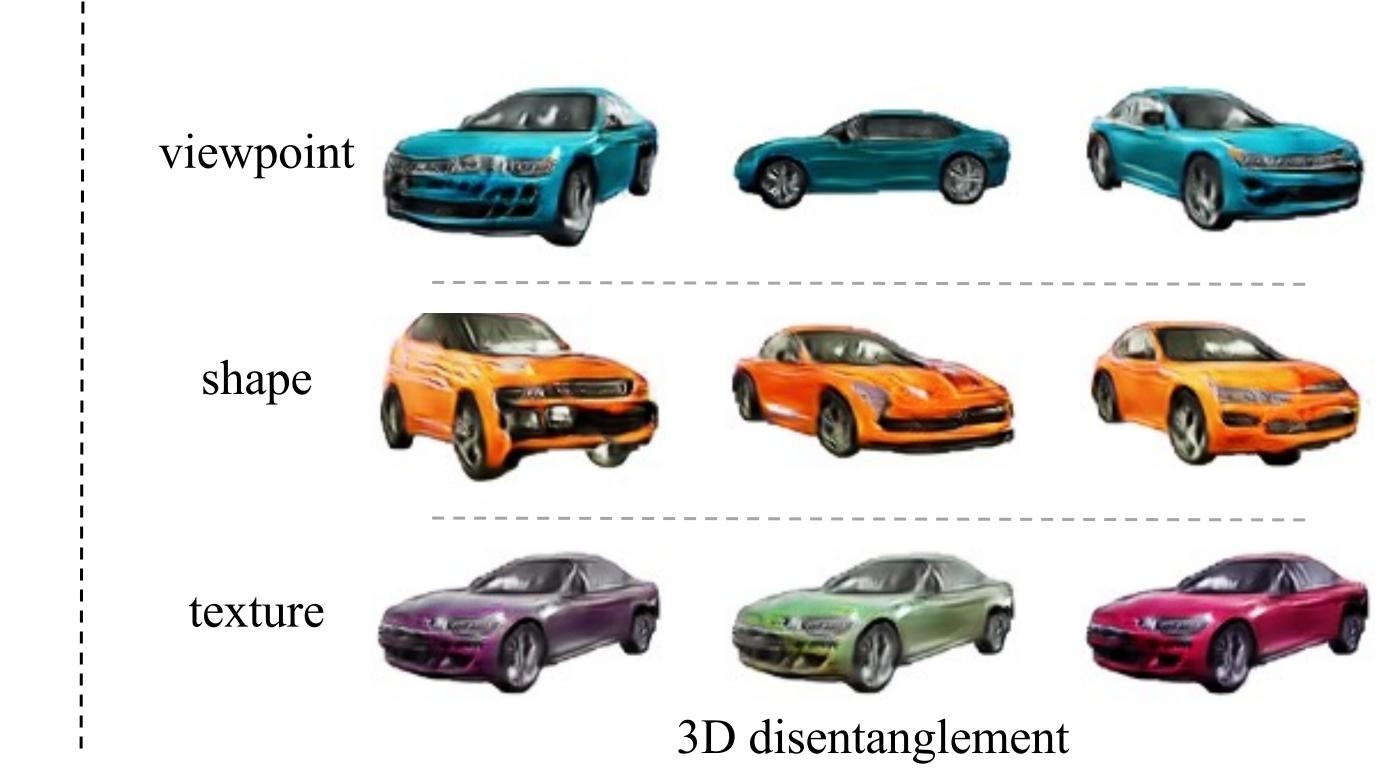


samples from 2D GANs



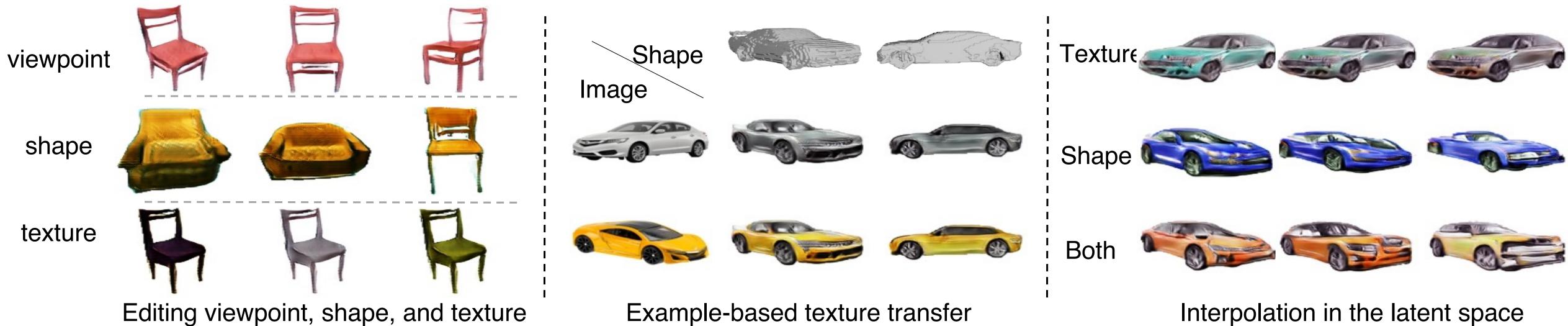


our 3D, 2.5D, and 2D output



3D

2D



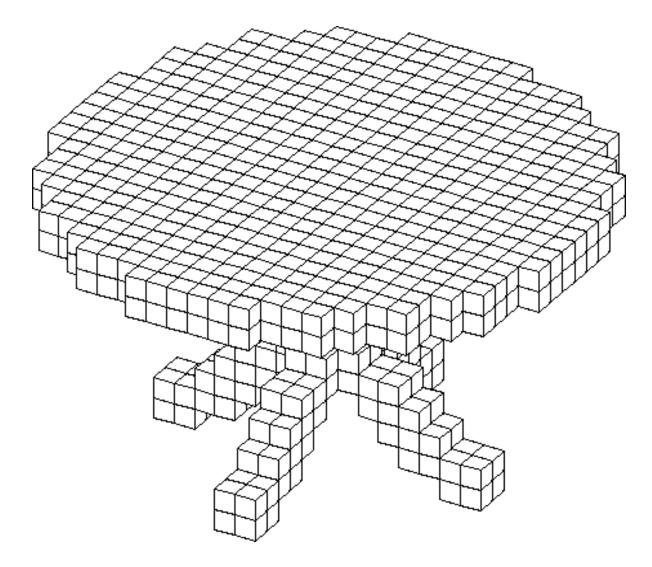
Limitations: 1. Voxel representation is expensive. 2. Requires ground truth 3D data.

Volumetric 3D

Each grid cell stores information (e.g., occupancy, color)

Very general but memory-intensive

256x256x256 -> 1024x1024x1024

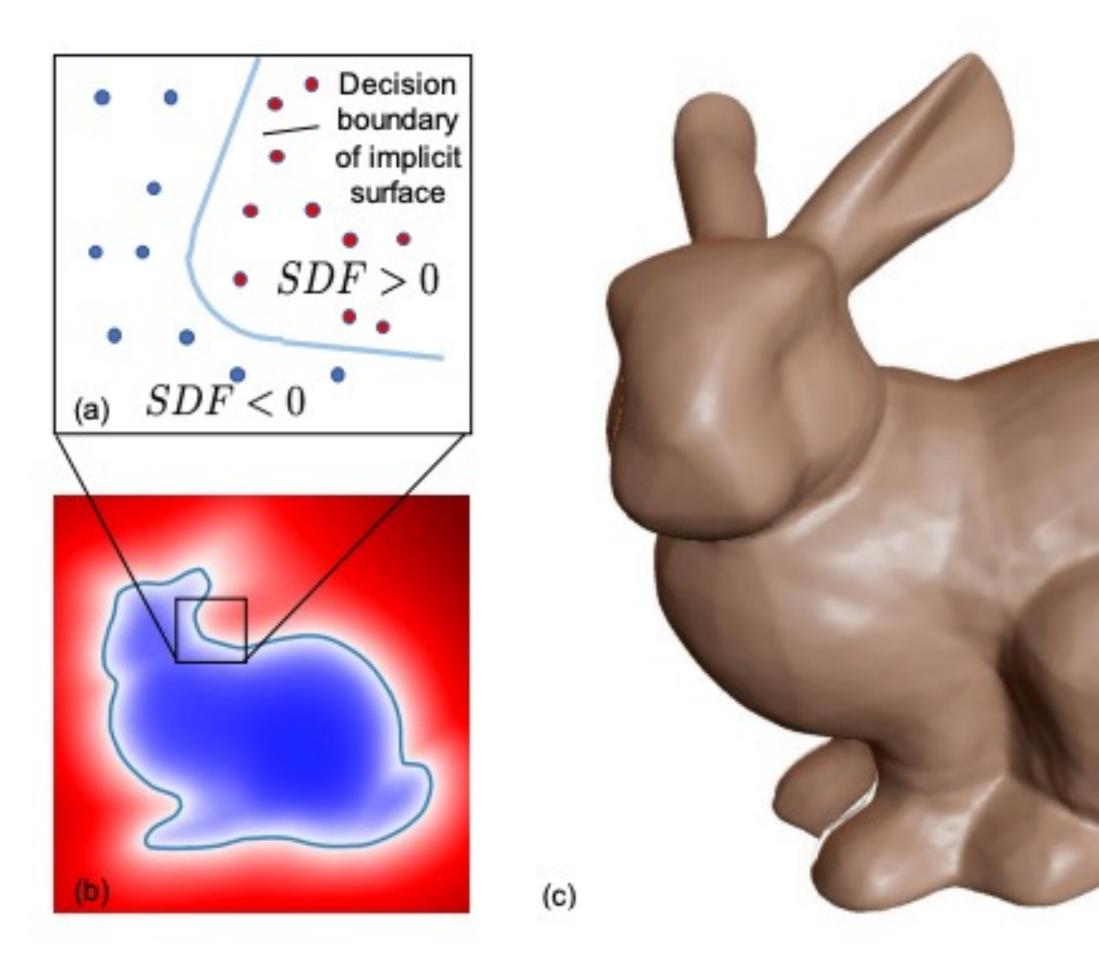


Cannot even fit a single training data to GPU

Slide credit: Shubham Tulsiani

Improvements: 1. Using implicit representation (network-based)

Signed Distance Function (SDF)

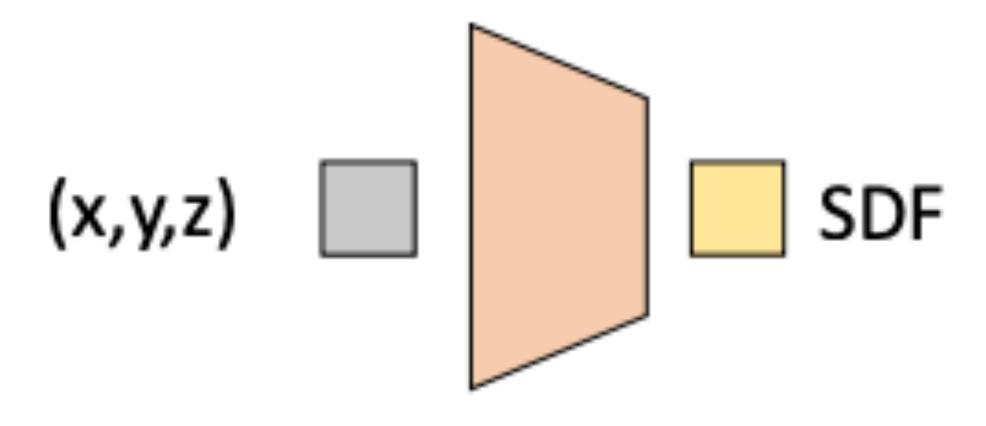


DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. [Park et al., CVPR 2019]

Explicit function: y = 2x.(y = f(x))

Implicit function:

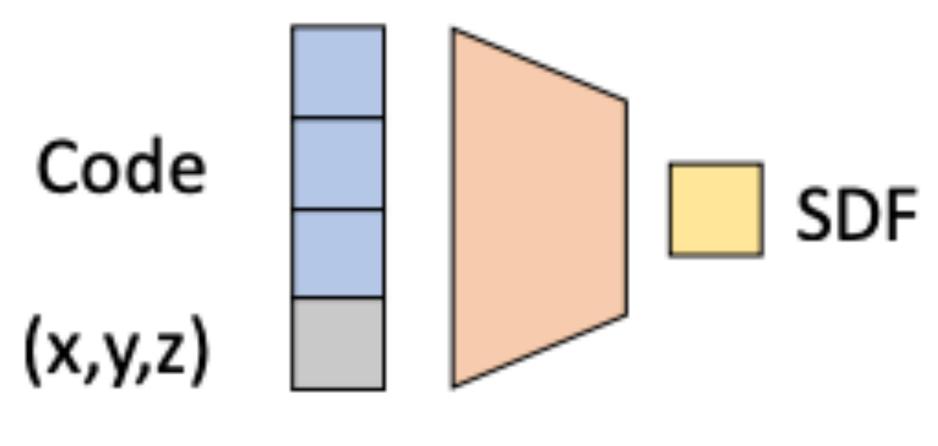
2y - 4x = 0, F(x, y) = 0A set of zeros of a function of two variables.



(a) Single Shape DeepSDF

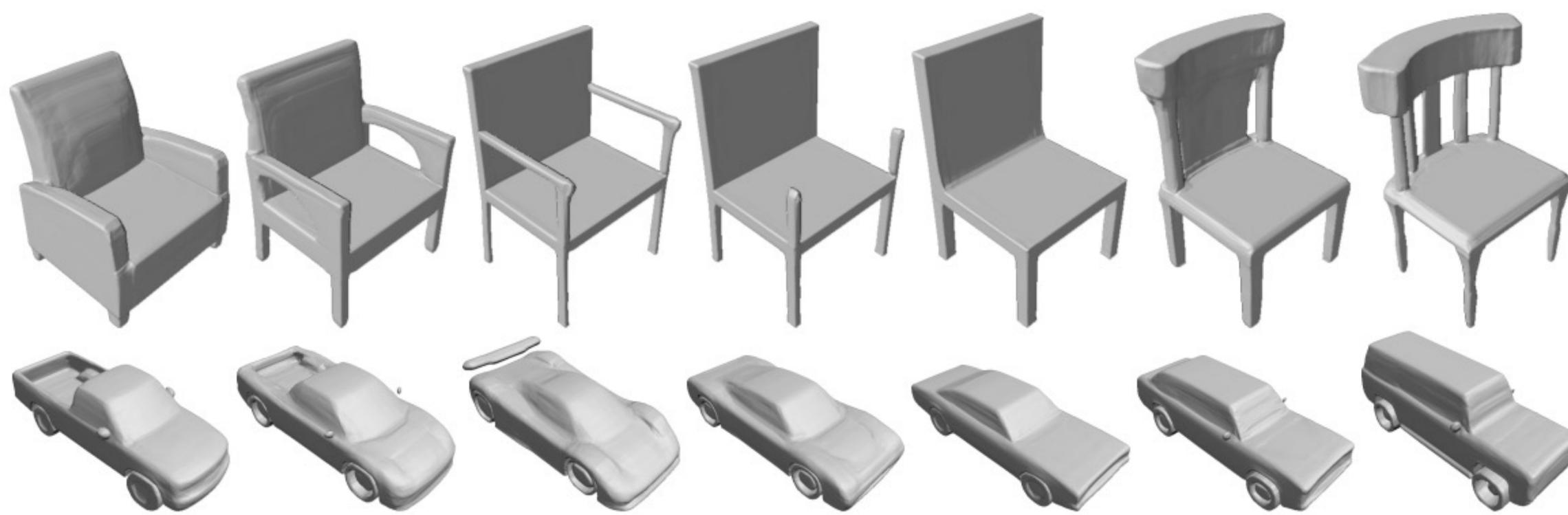
DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. [Park et al., CVPR 2019]

Deep SDF



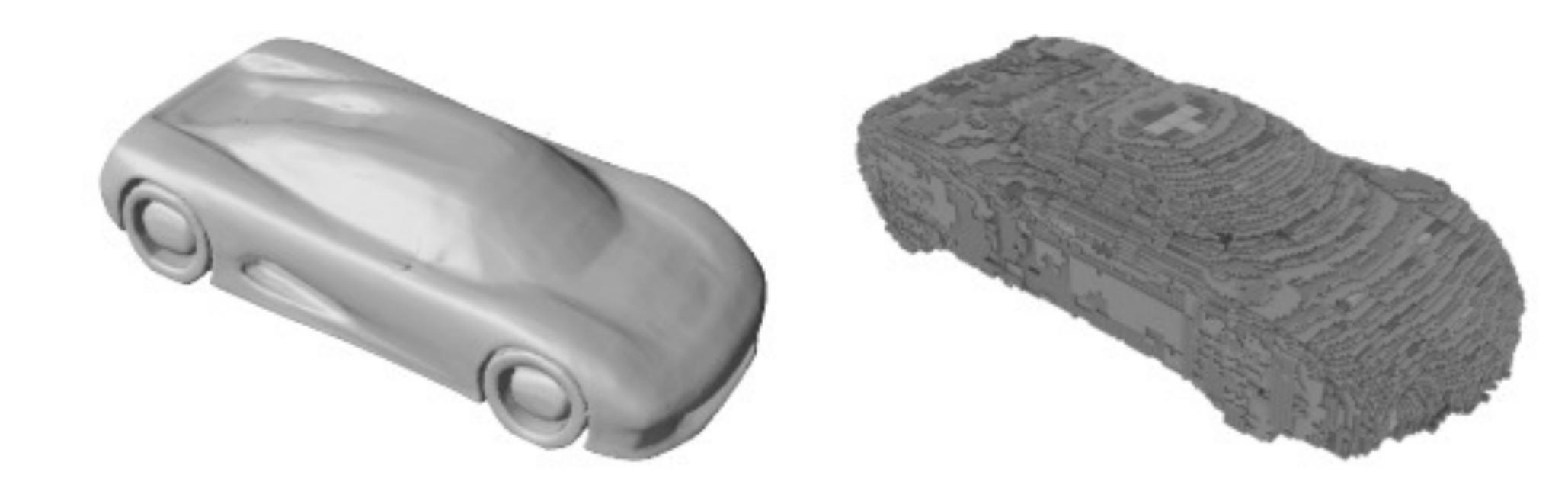
(b) Coded Shape DeepSDF

Deep SDF



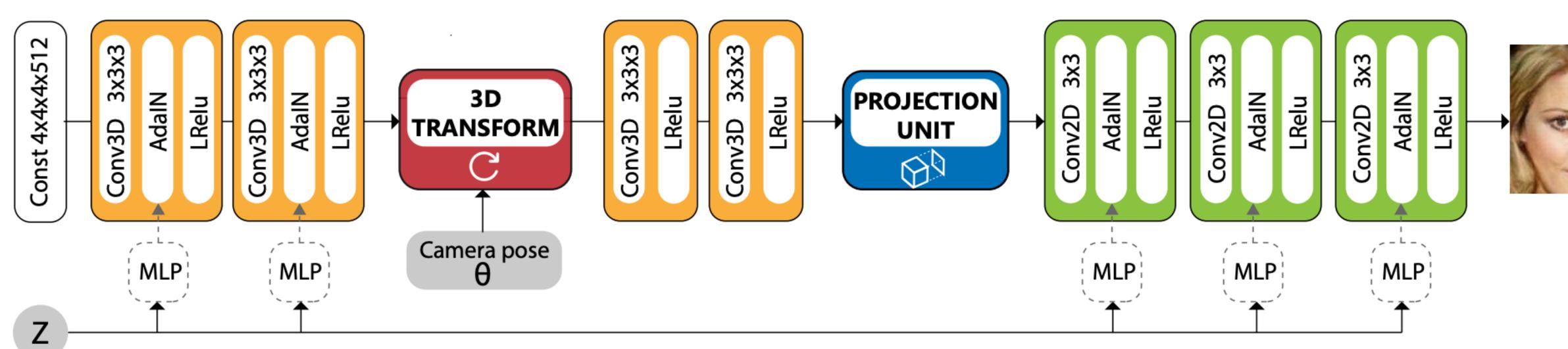
DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. [Park et al., CVPR 2019]

Deep SDF



DeepSDF preserve details and render visually pleasing results compared to voxel-based methods.

Improvements:1. Using implicit representation (network-based)2. Learning from image collections



<u>Representation:</u> 3D feature representation Training: Adversarial loss + latent code reconstruction Modulation: AdalN

HoloGAN: Unsupervised Learning of 3D Representations From Natural Images. [Nguyen-Phuoc et al., ICCV 2019]

HoloGAN

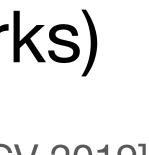
HoloGAN

Limitations:

- Do not synthesize geometric outputs (e.g., voxels, SDF).

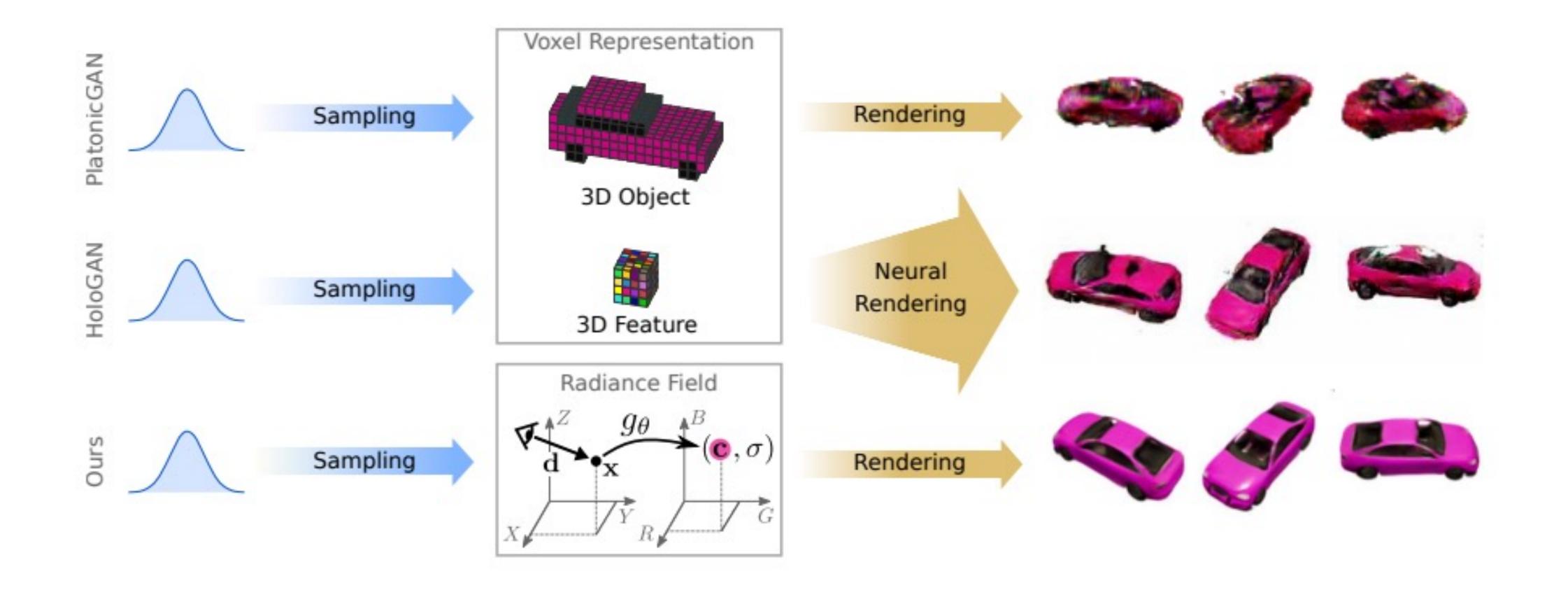
HoloGAN: Unsupervised Learning of 3D Representations From Natural Images. [Nguyen-Phuoc et al., ICCV 2019]

- No explicit viewpoint consistency. (same issue with Visual Object Networks)



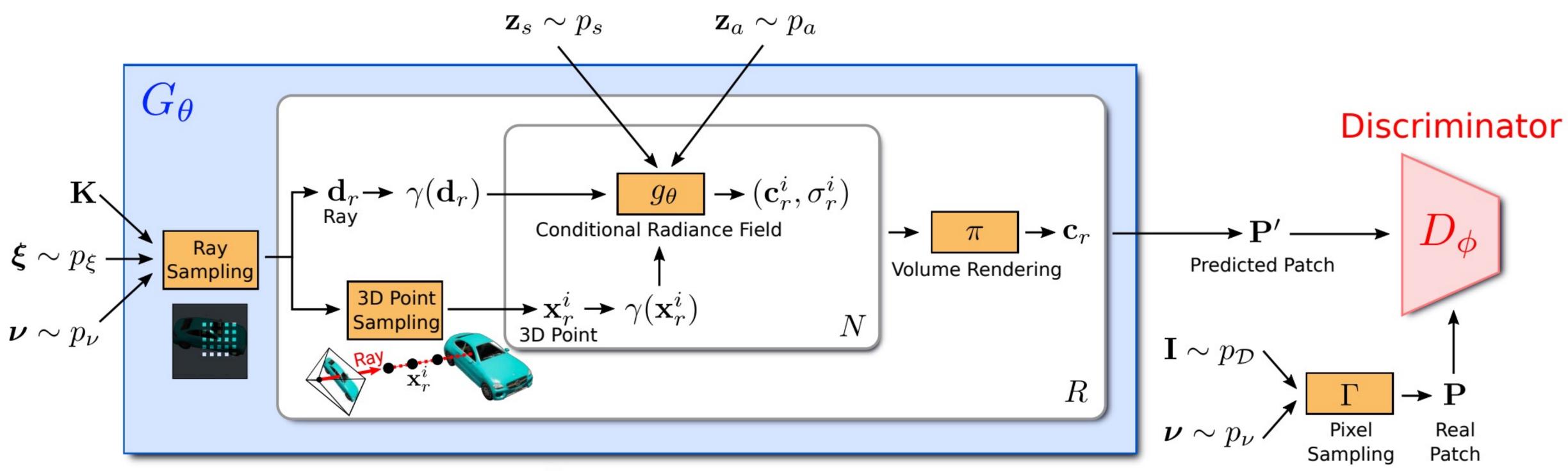
Nerrest + Gans (Neural rendering + Generative Models)

GRAF: Generative Radiance Fields



GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. [Schwarz*, Liao*, et al., ICCV 2019]

GRAF: Generative Radiance Fields



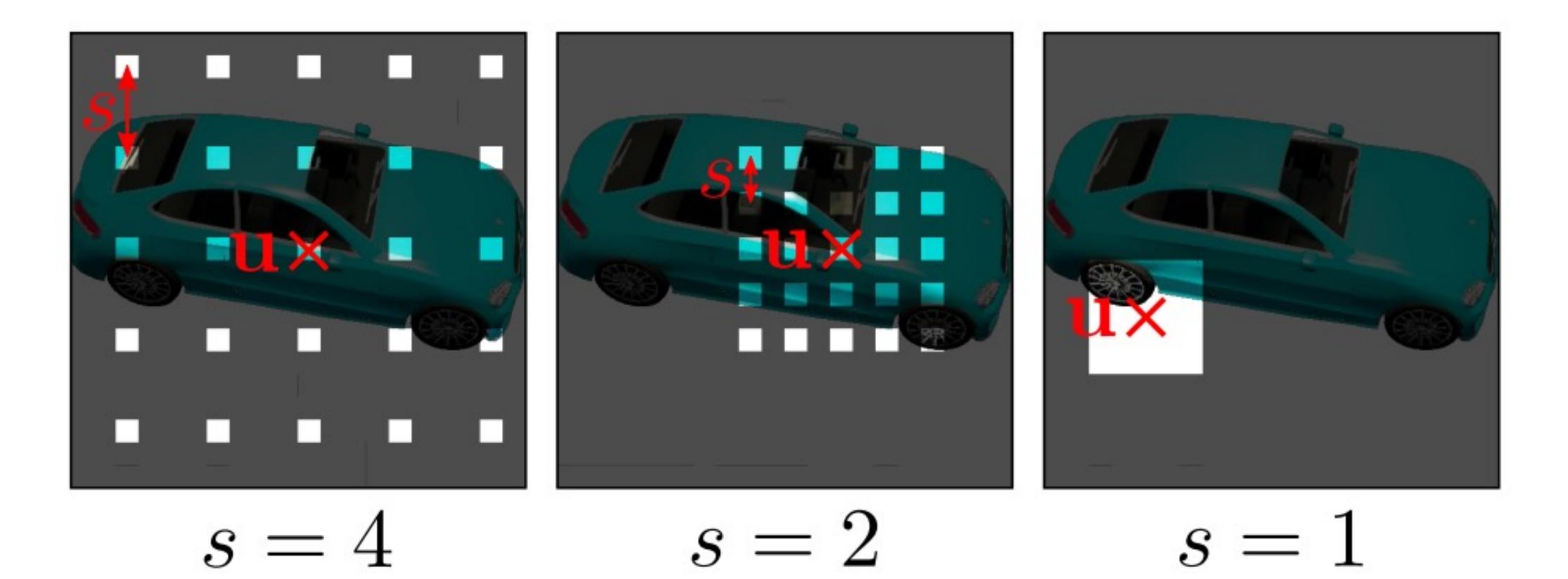
Generator

- **Patch-based Discriminator** (full-image discriminator is too slow)

GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. [Schwarz*, Liao*, et al., ICCV 2019]

NeRF Generator is conditioned on both shape and appearance code.

GRAF: Generative Radiance Fields



GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. [Schwarz*, Liao*, et al., ICCV 2019]

Multi-scale ray sampling

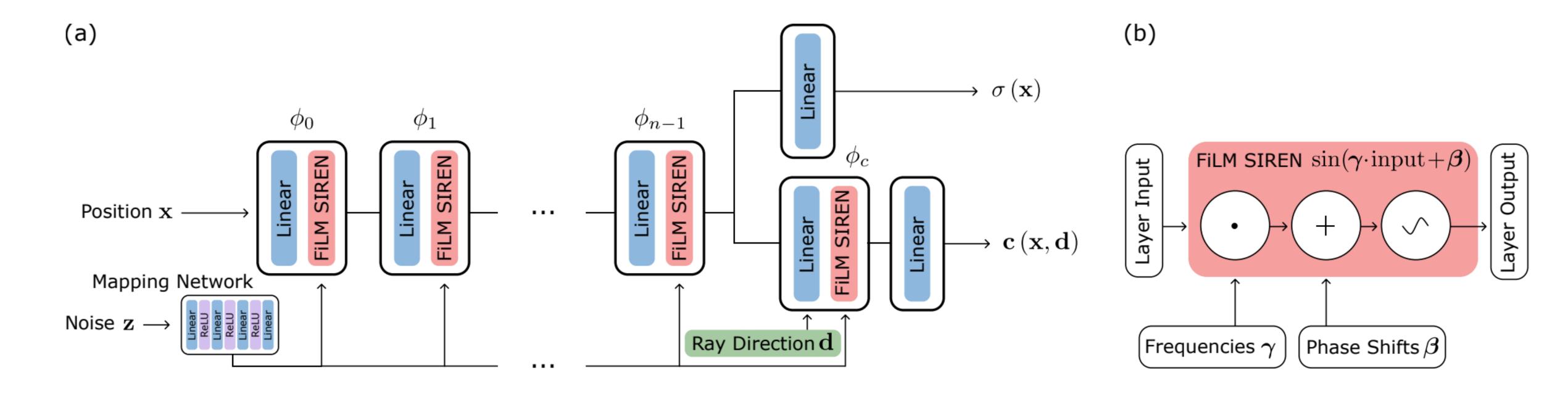
3D-Aware GAN Training Steps

- 1. Generate a representation of a scene
- 2. Render the scene from a random camera pose
- 3. Feed the image to a 2D discriminator
- 4. Backpropagate through the discriminator and differentiable rendering

Generate a scene

Training a 3D-Aware GAN

Render a 2D Image Feed the image to the discriminator

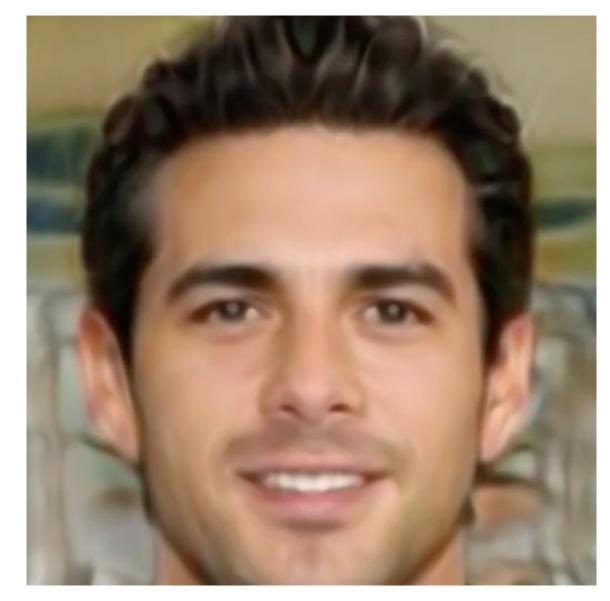


Mapping network + AdaIN (FILM) + learnable positional encoding $\phi_i(\mathbf{x}_i) = \sin(\boldsymbol{\gamma}_i \cdot (\mathbf{W}_i \mathbf{x}_i + \mathbf{b}_i) + \boldsymbol{\beta}_i)$

pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis [Chan et al., 2021]

 π -GAN

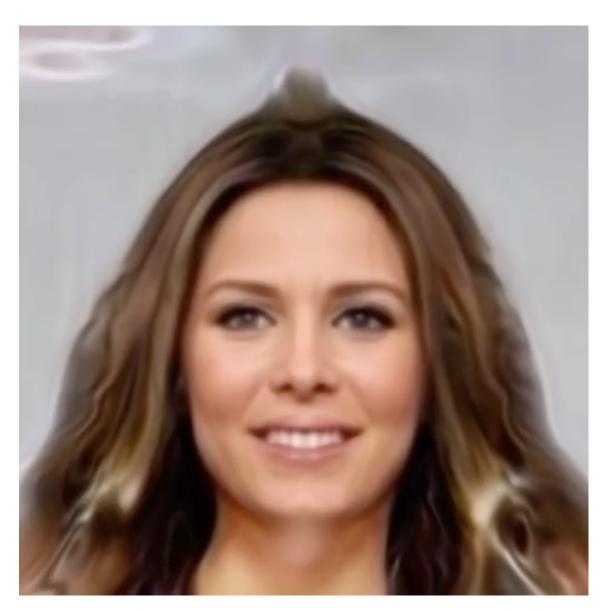
Focal Length



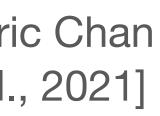
Slide credit: Eric Chan pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis [Chan et al., 2021]

π -GAN

Camera Position



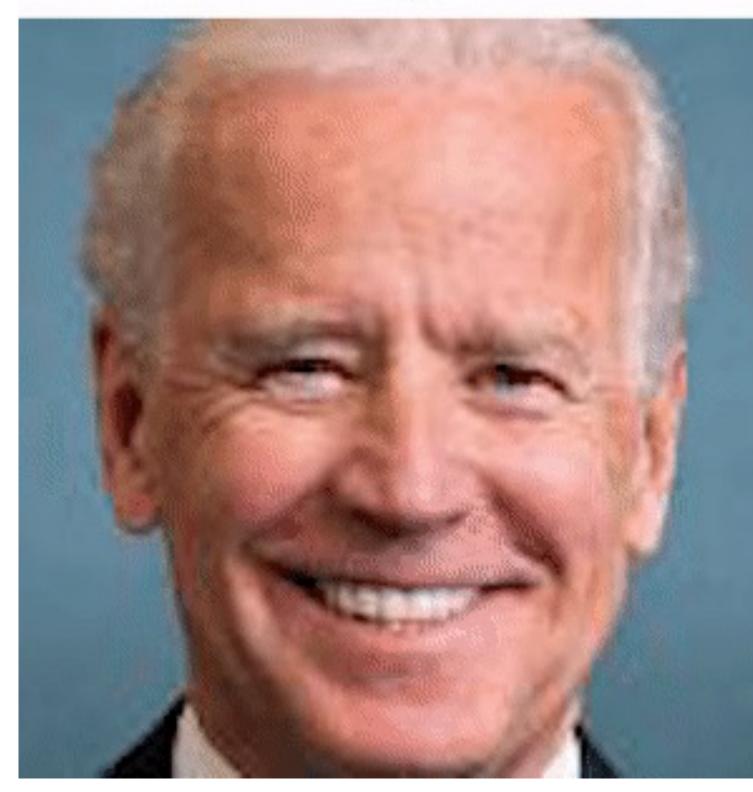
Latent Interpolation



Slide credit: Eric Chan pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis [Chan et al., 2021]

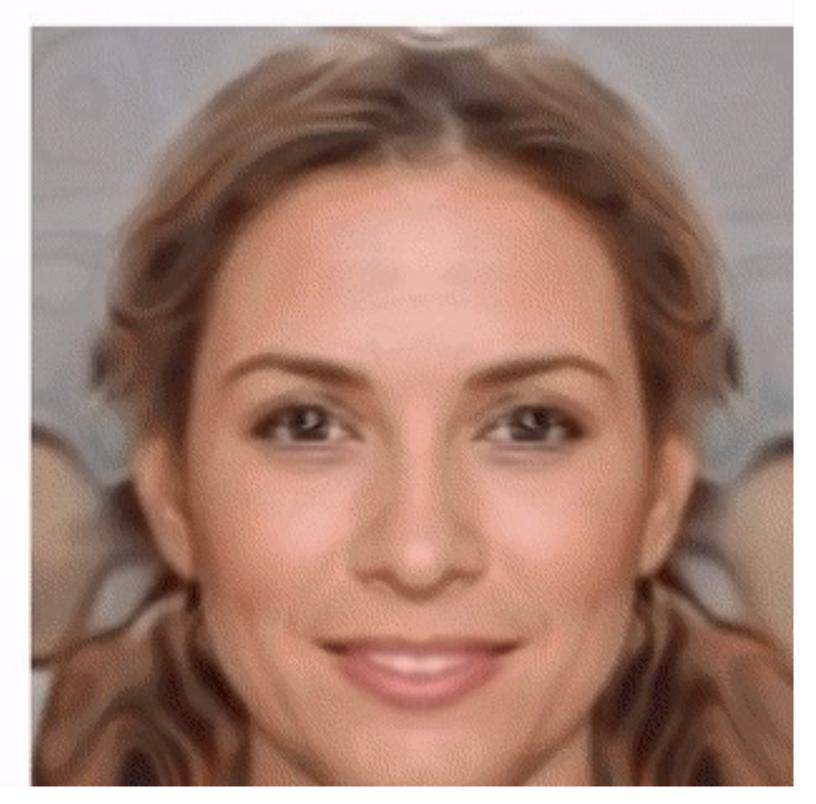


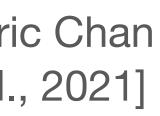
Target



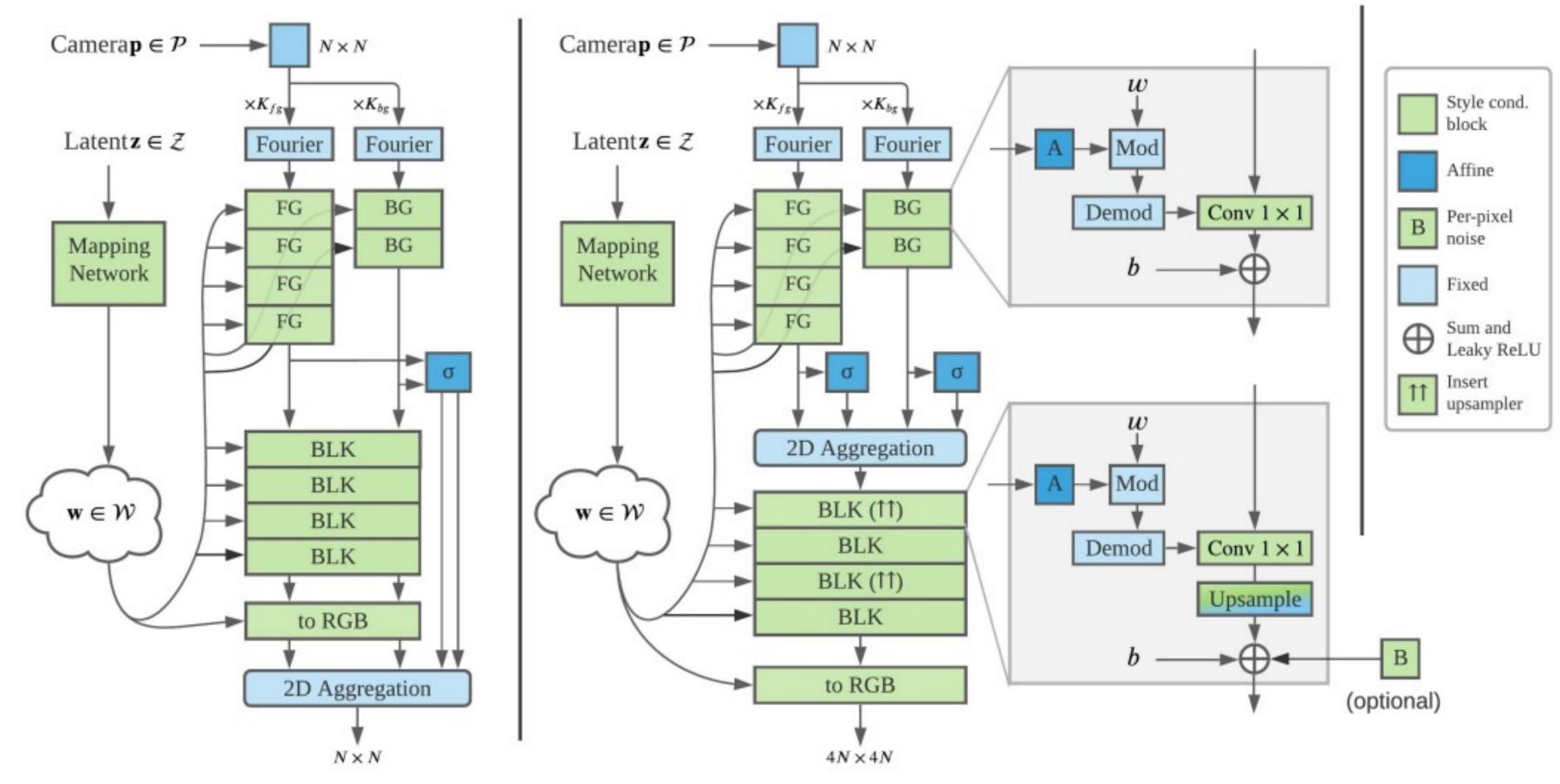
Slide credit: Eric Chan pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis [Chan et al., 2021]

Reconstruction





Advanced Architectures: StyleNeRF



Baseline architecture

Proposed architecture rendering features via volumetric rendering + GANs-based upsampler

Also see recent work: e.g., StyleNeRF [Gu et al.], EG3D [Chan et al.], StyleSDF [Or-El et al.], ShadeGAN [Pan et al.], ... StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis [Gu et al., 2021]

0	Grad	dio	×	+
←	\rightarrow	C	localhost:21111	

MODEL NAME			
FFHQ512 ~			
CHECKPOINT PATH			
TRUNCATION TRICK		_	
	0.7		
SEED1 4			
4 SEED2			
9			
LINEAR MIXING RATIO (GEOMETRY)			
	0		
LINEAR MIXING RATIO (APPARENCE)			
-	0		
YAW			
	0		
PITCH			
	0		
FOV			
	12		
	Clear		

StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis [Gu et al., 2021]

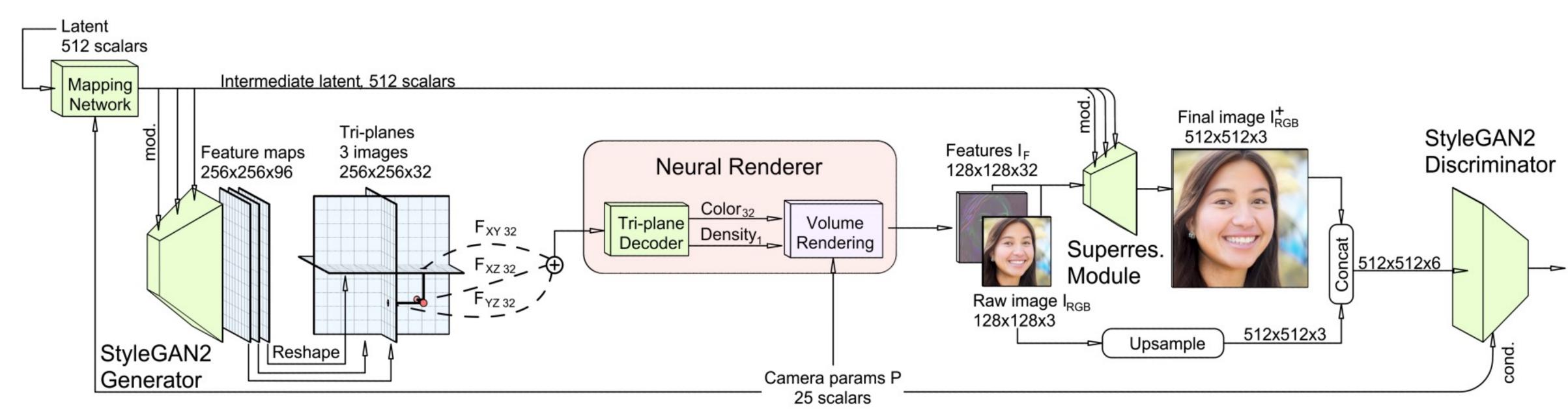
OUTPUT

0.12s Screenshot

Flag

built with 寥

Advanced Architectures: EG3D (StyleNeRF+Triplane)



Tri-plane representation for speed-up

Rendering features via volumetric rendering

```
F(x, y, x) \rightarrow F(x, y) + F(x, z) + F(y, z)
```

features are useful for upsampling

Also see recent work: e.g., StyleNeRF [Gu et al.], EG3D [Chan et al.], StyleSDF [Or-El et al.], ShadeGAN [Pan et al.], ... EG3D: Efficient Geometry-aware 3D Generative Adversarial Networks [Chan et al., 2021]

Generate final output via image encoder

If the model is too slow, use GAN-based upsampler



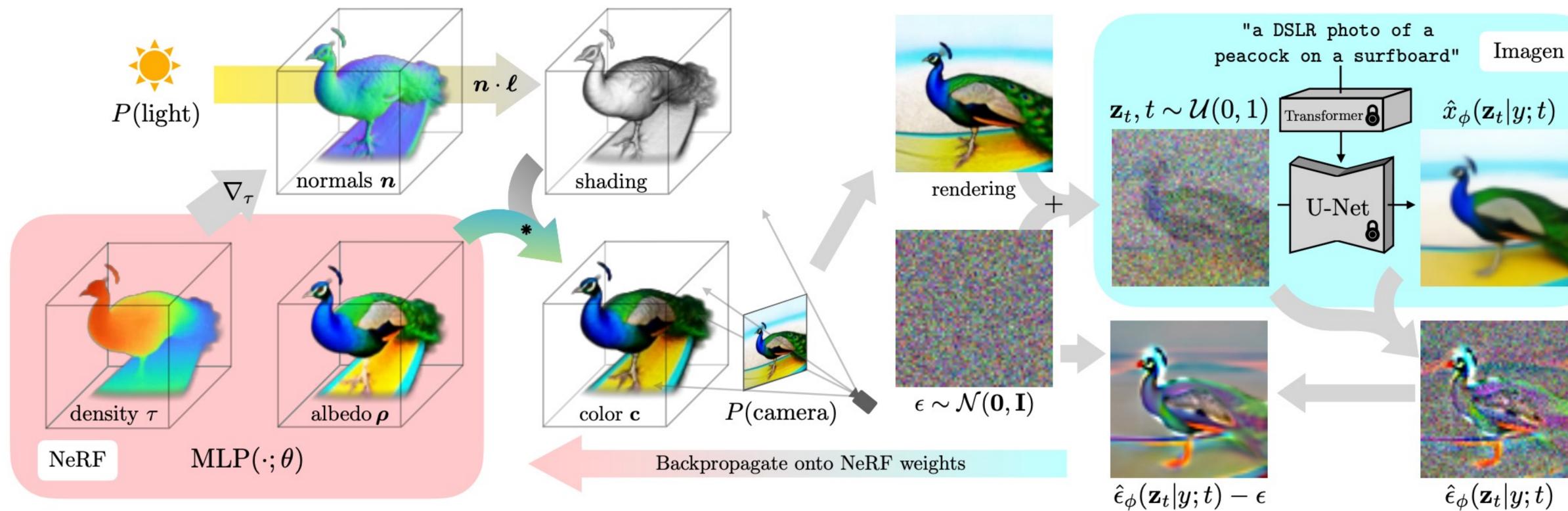
Text-based Editing with Generative NeRFs

Text-based Editing

a DSLR photo of a squirrel wearing a purple hoodie reading a book

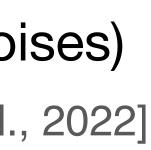
DreamFusion: Text-to-3D using 2D Diffusion [Poole et al., 2022]

Text-based Editing

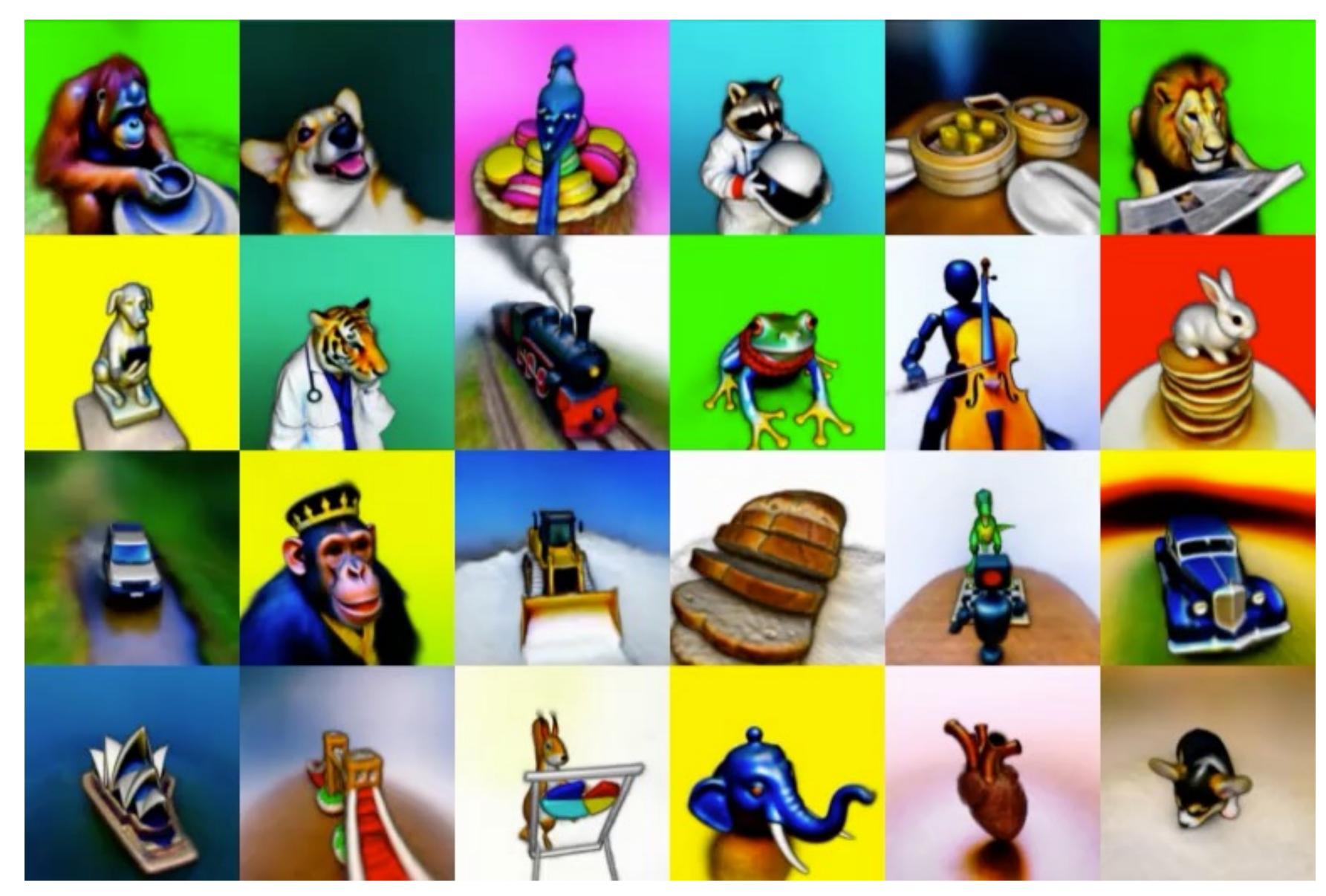


FOR loop

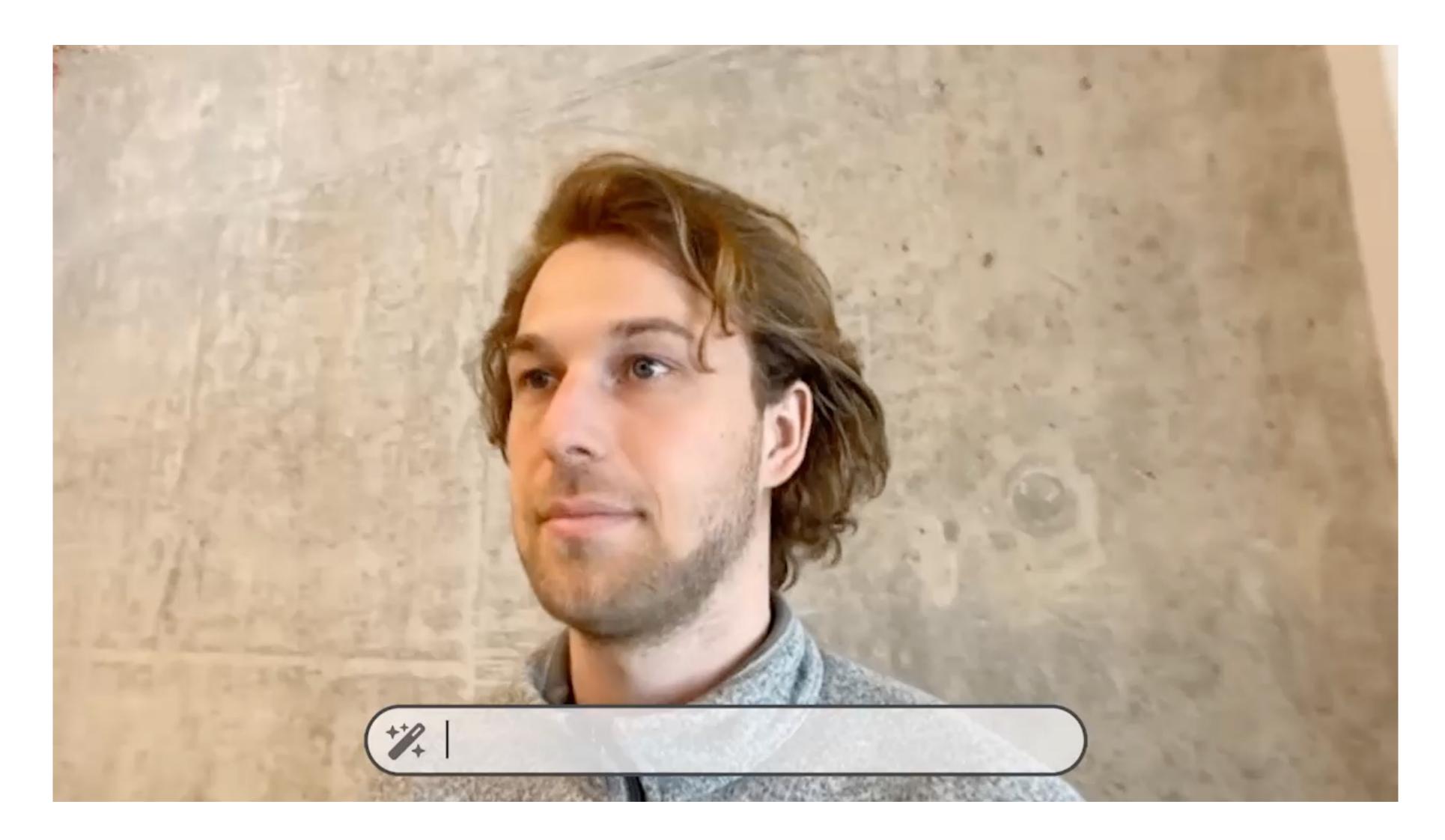
Step 1. Render a view using existing NeRF Step 2. Add noise and denoise using a pre-trained Stable Diffusion model Step 3. Update NeRF parameters with the gradient (difference between added and predicted noises) DreamFusion: Text-to-3D using 2D Diffusion [Poole et al., 2022]



Text-based Editing

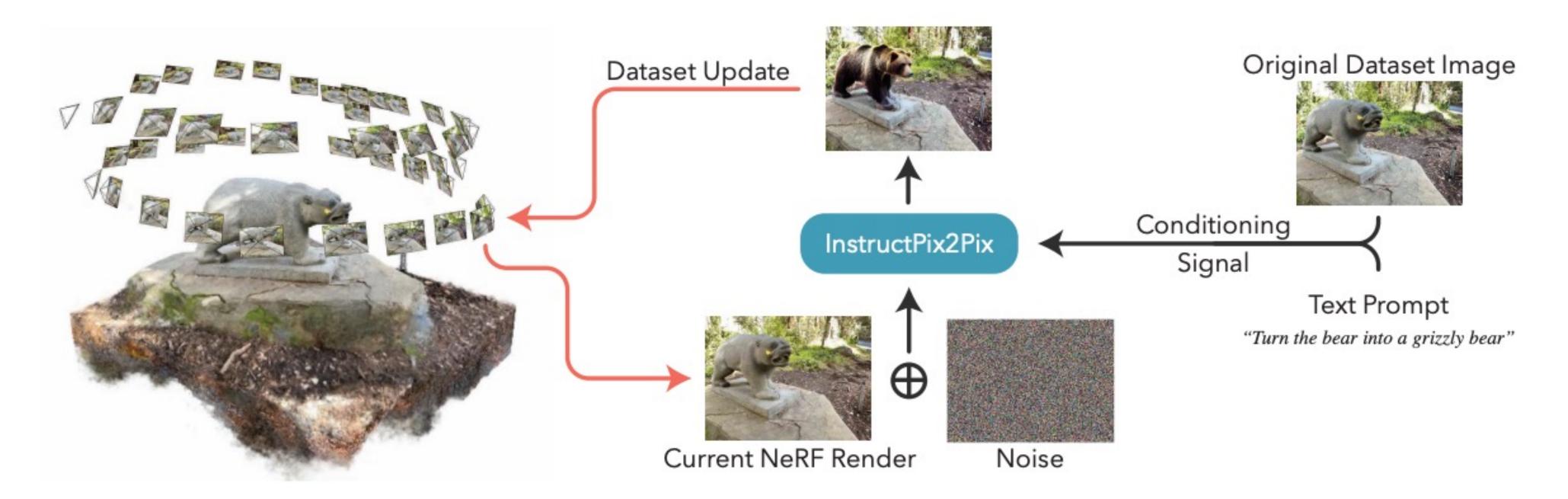


DreamFusion: Text-to-3D using 2D Diffusion [Poole et al., 2022]



Instruct NeRF2NeRF

Instruct-NeRF2NeRF: Editing 3D Scenes with Instructions [Haque et al., 2023]



FOR loop Step 1. Render a view using existing NeRF Step 2. Use InstructPix2Pix to produce output images Step 3. Update NeRF parameters with the generated result from Step 2

InstructPix2pix: image-conditional diffusion model (<u>https://www.timothybrooks.com/instruct-pix2pix/</u>)

Instruct NeRF2NeRF

Instruct-NeRF2NeRF: Editing 3D Scenes with Instructions [Haque et al., 2023]

Thank You! https://learning-image-synthesis.github.io/